• 【整除分块】 余数之和


    传送门

    题意

    给定正整数(n,k),计算((k ; mod; 1)+(k; mod; 2)+(k; mod; 3)+dots +(k; mod; n))的值,

    数据范围

    (1leq n,k leq 10^{9})

    题解

    (k; mod ; i = k- lfloor frac{k}{i} floor imes i),问题转化为计算(n imes k - sum_{i=1}^{n} lfloor frac{k}{i} floor imes i)
    证明(sum_{i=1}^{n}leftlfloorfrac{k}{i} ight floor imes i)最多只有(2 sqrt{k})个值,

    • (i leq sqrt{k})的时候,最多有(sqrt{k})个不同的取值
    • (i>sqrt{k})的时候,(leftlfloorfrac{k}{i} ight floor < sqrt{k}) , 故最多有(sqrt{k})个不同的取值

    易知(leftlfloorfrac{k}{x} ight floor)相同的必定是连续的,若某一个相等区间(x)是下界,上界是(leftlfloorfrac{k}{leftlfloorfrac{k}{x} ight floor} ight floor)
    证明:
    (l = x)(r = leftlfloorfrac{k}{leftlfloorfrac{k}{x} ight floor} ight floor), (leftlfloorfrac{k}{x} ight floor)显然随着(x)增加减少,

    [ecauseleftlfloorfrac{k}{x} ight floorleq frac{k}{x}, herefore r geqslantleftlfloorfrac{k}{left(frac{k}{x} ight)} ight floor=x ]

    [ hereforeleftlfloorfrac{k}{r} ight floor leqleftlfloorfrac{k}{x} ight floor ]

    [egin{array}{l}ecause r leq frac{k}{leftlfloorfrac{k}{x} floor ight.} , herefore leftlfloorfrac{k}{r} ight floor geqslantleftlfloorfrac{k}{frac{k}{leftlfloorfrac{k}{x} ight floor}} ight floorend{array} ]

    [ herefore leftlfloorfrac{k}{r} ight floor geqslant x ]

    综上可以得到

    [leftlfloor frac{k}{r} ight floor=leftlfloorfrac{k}{x} ight floor ]

    [ecause i inleft[x,leftlfloorfrac{k}{leftlfloorfrac{k}{x} ight floor} ight floor ight]区间内的数,lfloorfrac{k}{i} floor的值都相等 ]

    时间复杂度:(O(sqrt{k}))

    Code

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    
    ll ans;
    
    int main()
    {
        ll n,k,l,r;
        cin>>n>>k;
        ans=n*k;
        for(l = 1;l<=n;l=r+1)
        {
            if(k/l == 0) break;//0对答案无贡献
    
            r=min(k/(k/l),n);
            ans-=1ll * (k/l) *(l+r)*(r-l+1)/2;//等差数列求和你n*(a1+an)/2
        }
        cout<<ans<<endl;
    }
    
  • 相关阅读:
    netty 服务端 启动阻塞主线程
    idea踩过的坑
    bat批量重命名
    图片上传
    TCP/IP入门指导
    CPU governor调节器汇总
    IT咨询顾问:一次吐血的项目救火
    python 数组
    Python字符串
    基于Python实现对各种数据文件的操作
  • 原文地址:https://www.cnblogs.com/hhyx/p/13415137.html
Copyright © 2020-2023  润新知