There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
Sample Input
2 0 1 1 2 0 1 2 4
Sample Output
1 -1
题意:有两个端点A,B,每次你可以向左或者向右走a,b,a+b的距离,问最少走多少次能从A走到B。
思路:设A,B之间的距离为dis,a+b=c,那么题目等价于min{|x|+|y| | (ax+by=dis) || (ax+cy=dis) || (bx+cy=dis) }.注:扩展欧几里德算出来ax+by=gcd(c,d)中的特殊值x,y一定满足|x|+|y|最小,但是如果算的是ax+by=d,(d%gcd(a,b),但是d!=gcd(a,b))那么就不一定|x|+|y|最小,此时要使得x趋近于0,或者使得y趋近于0,这样算出来的k带入然后取几者中的最小值,因为x,y的关系式是一条直线,|x|+|y|=m在直线接近坐标轴的情况下取到最小值。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 10000000000000LL
#define pi acos(-1.0)
#define MOD 1000000007
#define maxn 1000005
ll extend_gcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;return a;
}
ll d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
ll niyuan(ll a,ll n){
ll x,y;
ll d=extend_gcd(a,n,x,y);
if(d==1) return (x%n+n)%n;
else return -1;
}
ll gcd(ll a,ll b){
return (b>0)?gcd(b,a%b):a;
}
ll solve(ll a,ll b,ll dis)
{
ll x,y,d,x0,y0,ans;
d=extend_gcd(a,b,x,y);
if(dis%d!=0)return -1;
x0=x*dis/d;
y0=y*dis/d;
ll aa,bb;
aa=a/d;
bb=b/d;
ll k;
k=-x0/bb-1;
ans=abs(x0+bb*k)+abs(y0-aa*k);
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k=y0/aa-1;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
return ans;
}
int main()
{
int n,m,i,j,T;
ll x1,x2,a,b,c,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld",&x1,&x2,&a,&b);
ll dis=abs(x2-x1);
c=a+b;
ll ans=solve(a,b,dis);
ans=min(ans,solve(a,c,dis));
ans=min(ans,solve(b,c,dis));
printf("%lld
",ans);
}
return 0;
}