• BZOJ 2834: 回家的路 Dijkstra


    按照横,竖为方向跑一个最短路即可,算是水题~ 

    #include <bits/stdc++.h>    
    #define N 200005    
    #define E 2000000 
    #define setIO(s) freopen(s".in","r",stdin) 
    using namespace std;      
    int n,m,tot,edges,s,T;     
    int hd[E],to[E],nex[E],val[E],d[E],done[E],id[E][2];            
    void addedge(int u,int v,int c) 
    {
        nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c;     
    }
    struct Point
    {
        int x,y,id;   
        Point(int x=0,int y=0):x(x),y(y){}   
    }t[N];     
    struct Node
    {
        int u,dis; 
        Node(int u=0,int dis=0): u(u),dis(dis){} 
        bool operator<(Node b) const 
        {
            return b.dis<dis;    
        }
    }; 
    priority_queue<Node>q;     
    bool cmpx(Point a,Point b) 
    {
        return a.x==b.x?a.y<b.y:a.x<b.x;    
    }  
    bool cmpy(Point a,Point b) 
    {
        return a.y==b.y?a.x<b.x:a.y<b.y;    
    }
    void Dijkstra() 
    {
        memset(d,0x3f,sizeof(d)); 
        for(d[s]=0, q.push(Node(s, 0)); !q.empty(); ) 
        {
            Node e = q.top(); q.pop(); 
            int u=e.u; 
            if(done[u]) continue;   
            done[u]=1; 
            for(int i=hd[u];i;i=nex[i]) 
            {
                int v=to[i]; 
                if(d[v] > d[u] + val[i]) 
                {
                    d[v] = d[u] + val[i]; 
                    q.push(Node(v, d[v]));      
                }
            }
        }
    }
    int main() 
    {  
        int i,j,k;  
        // setIO("input");  
        scanf("%d%d",&n,&m);         
        for(i=2;i<=m+1;++i) 
        { 
            scanf("%d%d",&t[i].x,&t[i].y);    
            id[i][0]=++tot;   
            id[i][1]=++tot;                   
            t[i].id=i;     
        }    
        scanf("%d%d",&t[1].x,&t[1].y); 
        id[1][0]=++tot; 
        id[1][1]=++tot;  
        t[1].id=1;
        m+=2;            
        scanf("%d%d",&t[m].x,&t[m].y); 
        id[m][0]=++tot; 
        id[m][1]=++tot;  
        t[m].id=m;            
        for(i=1;i<=m;++i) 
        {
            addedge(id[i][0],id[i][1],1); 
            addedge(id[i][1],id[i][0],1);   
        }
        sort(t+1,t+1+m,cmpx);  
        for(i=1;i<=m;i=j) 
        {
            for(j=i;j<=m&&t[j].x==t[i].x;++j);    
            for(k=i+1;k<j;++k) 
            { 
                addedge(id[t[k-1].id][1], id[t[k].id][1], 2 * (t[k].y-t[k-1].y));     
                addedge(id[t[k].id][1], id[t[k-1].id][1], 2 * (t[k].y-t[k-1].y));     
            }
        }  
        sort(t+1,t+1+m,cmpy);    
        for(i=1;i<=m;i=j) 
        {
            for(j=i;j<=m&&t[j].y==t[i].y;++j);    
            for(k=i+1;k<j;++k) 
            { 
                addedge(id[t[k-1].id][0], id[t[k].id][0], 2 * (t[k].x-t[k-1].x));     
                addedge(id[t[k].id][0], id[t[k-1].id][0], 2 * (t[k].x-t[k-1].x));          
            }
        }  
    
        s=0, T=++tot;    
    
        addedge(s, id[1][0], 0);   
        addedge(s, id[1][1], 0);   
    
        addedge(id[m][0], T, 0);  
        addedge(id[m][1], T, 0);      
        Dijkstra();      
        printf("%d
    ",d[T]);         
        return 0;   
    }
    

      

  • 相关阅读:
    CF258D
    CF662C
    CF1295F
    CF1406E
    CF1270F
    CF1278F
    CF1523E
    CF1554E
    算法第四章上机实践报告
    LCA RMQ+ST表学习笔记
  • 原文地址:https://www.cnblogs.com/guangheli/p/11549151.html
Copyright © 2020-2023  润新知