GCompute - 计算三角形对的交点(2)
上一篇文章中介绍了基于论文PaperRead - A fast triangle-triangle intersection test实现了GCompute - 计算三角形对的交点(1)。这篇文章将从边和三角形相交的角度出发,计算交点。
RTCD - 3.1 A math and geometry primer - matrix摘录我们已经介绍了,如何判断一个点和一个三角形的关系。此处借用这个关系来计算三角形对之间的交点,大致思路如下:
- 首先计算三角形A的三个顶点和三角形B的位置关系;
- 根据位置关系,计算可能会有交点的边和三角形面的关系(直线和平面求交);
- 计算交点的重心坐标,判断点是不是位于三角形内。
具体实现如下:
#pragma once
#include <iostream>
#include <cmath>
#include <algorithm>
#include <assert.h>
#include <vector>
#include <iterator>
#include <Eigen/Dense>
typedef Eigen::Vector3d Point3d;
class Triangle
{
public:
Triangle(Point3d pt0, Point3d pt1, Point3d pt2) : m_pt {pt0, pt1, pt2}
{
auto vecPt0TPt1 = pt1 - pt0;
auto vecPt0TPt2 = pt2 - pt0;
m_vecNormal = vecPt0TPt1.cross(vecPt0TPt2);
m_vecNormal.normalize();
}
double GetDistanceFromPointToTrianglePlane(Point3d pt) const
{
auto vecPtTPt0 = m_pt[0] - pt;
return m_vecNormal.dot(vecPtTPt0);
}
Point3d m_pt[3];
Eigen::Vector3d m_vecNormal;
};
#define EPSION 1e-7
enum IntersectionType
{
INTERSECTION, //< 有相交线段
DISJOINT, //< 不相交
COPLANE //< 共面
};
bool IsZero(double value, double epsion = EPSION)
{
return std::abs(value) < epsion;
}
bool IsEqual(double v1, double v2, double epsion = EPSION)
{
return IsZero(v1-v2, epsion);
}
bool IsPositive(double value, double epsion = EPSION)
{
return value - epsion > 0;
}
bool IsNegative(double value, double epsion = EPSION)
{
return value + epsion < 0;
}
int GetSignType(double value)
{
if (IsZero(value)) return 0;
if (IsPositive(value)) return 1;
return -1;
}
enum PositionType
{
IN,
OUT,
ON
};
PositionType GetPositionType(const Triangle& tri, const Point3d& pt)
{
Eigen::Matrix3d oriented;
oriented << tri.m_pt[0].x() - pt.x(), tri.m_pt[0].y() - pt.y(), tri.m_pt[0].z() - pt.z(),
tri.m_pt[1].x() - pt.x(), tri.m_pt[1].y() - pt.y(), tri.m_pt[1].z() - pt.z(),
tri.m_pt[2].x() - pt.x(), tri.m_pt[2].y() - pt.y(), tri.m_pt[2].z() - pt.z();
double value = oriented.determinant();
if (IsNegative(value))
{
return OUT;
}
else if (IsPositive(value))
{
return IN;
}
return ON;
}
Point3d CalInterPoint(const Eigen::Vector3d& planeNormal, const Point3d& ptOnPlane, const Eigen::Vector3d& lineDir, const Point3d& ptOnLine)
{
double t = planeNormal.dot(ptOnPlane - ptOnLine) / planeNormal.dot(lineDir);
return ptOnLine + lineDir * t;
}
bool CheckPtOnTriangle(const Triangle& tri, const Point3d& pt)
{
Eigen::Vector3d v0 = tri.m_pt[1] - tri.m_pt[0], v1 = tri.m_pt[2] - tri.m_pt[0], v2 = pt - tri.m_pt[0];
double d00 = v0.dot(v0);
double d01 = v0.dot(v1);
double d11 = v1.dot(v1);
double d20 = v2.dot(v1);
double d21 = v2.dot(v1);
double denom = d00 * d11 - d01 * d01;
double v = (d11 * d20 - d01 * d21) / denom;
double w = (d00 * d21 - d01 * d20) / denom;
if (v >= 0 && v <= 1 && w >= 0 && w <= 1)
{
return true;
}
return false;
}
IntersectionType GetIntersectionPoints(const Triangle& triPlane, const Triangle& triPoints, std::vector<Point3d>& pts)
{
std::vector<Point3d> ptResult;
PositionType relateToTriPlane[3] = {
GetPositionType(triPlane, triPoints.m_pt[0]),
GetPositionType(triPlane, triPoints.m_pt[1]),
GetPositionType(triPlane, triPoints.m_pt[2])
};
// 平面和直线相交计算
// 直线 P = V0 + dir*t
// 平面 Normal cdot (P - POn) = 0
// =>
// t = N cdot (POn - V0) / N cdot dir
if (relateToTriPlane[0] == relateToTriPlane[1] && relateToTriPlane[1] == relateToTriPlane[2])
{
if (relateToTriPlane[0] == ON)
{
return COPLANE;
}
else
{
return DISJOINT;
}
}
else if (relateToTriPlane[0] == relateToTriPlane[1])
{
Point3d inter1 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[2] - triPoints.m_pt[0], triPoints.m_pt[2]);
Point3d inter2 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[2] - triPoints.m_pt[1], triPoints.m_pt[2]);
if (CheckPtOnTriangle(triPlane, inter1)) ptResult.push_back(inter1);
if (CheckPtOnTriangle(triPlane, inter2)) ptResult.push_back(inter2);
}
else if (relateToTriPlane[0] == relateToTriPlane[2])
{
Point3d inter1 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[1] - triPoints.m_pt[0], triPoints.m_pt[1]);
Point3d inter2 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[1] - triPoints.m_pt[2], triPoints.m_pt[1]);
if (CheckPtOnTriangle(triPlane, inter1)) ptResult.push_back(inter1);
if (CheckPtOnTriangle(triPlane, inter2)) ptResult.push_back(inter2);
}
else if (relateToTriPlane[1] == relateToTriPlane[2])
{
Point3d inter1 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[0] - triPoints.m_pt[1], triPoints.m_pt[0]);
Point3d inter2 = CalInterPoint(triPlane.m_vecNormal, triPlane.m_pt[0], triPoints.m_pt[0] - triPoints.m_pt[2], triPoints.m_pt[0]);
if (CheckPtOnTriangle(triPlane, inter1)) ptResult.push_back(inter1);
if (CheckPtOnTriangle(triPlane, inter2)) ptResult.push_back(inter2);
}
else // 有一个点位于三角平面上,另外两个点分别位于两边
{
if (relateToTriPlane[0] == ON && CheckPtOnTriangle(triPlane, triPoints.m_pt[0])) ptResult.push_back(triPoints.m_pt[0]);
else if (relateToTriPlane[1] == ON && CheckPtOnTriangle(triPlane, triPoints.m_pt[1])) ptResult.push_back(triPoints.m_pt[0]);
else if (relateToTriPlane[2] == ON && CheckPtOnTriangle(triPlane, triPoints.m_pt[2])) ptResult.push_back(triPoints.m_pt[0]);
}
if (ptResult.empty())
{
return DISJOINT;
}
std::move(begin(ptResult), end(ptResult), back_inserter(pts));
return INTERSECTION;
}
void TriIntersectTestCase()
{
{
Triangle tr1(Point3d(0, 0, 0), Point3d(1, 0, 1), Point3d(0, 1, 1));
Triangle tr2(Point3d(1, 1, 0), Point3d(1, 1, 1), Point3d(0, 0, 1));
std::vector<Point3d> pts;
auto type = GetIntersectionPoints(tr1, tr2, pts);
assert(type == INTERSECTION);
std::cout << "Intersection points:
";
for (int i = 0; i < pts.size(); ++i)
{
std::cout << "=====" << "
";
std::cout << pts[i] << "
";
}
}
{
Triangle tr1(Point3d(0, 0, 0), Point3d(0, 0, 1), Point3d(1, 1, 0));
Triangle tr2(Point3d(1, 1, 0), Point3d(1, 1, 1), Point3d(0, 0, 1));
std::vector<Point3d> pts;
auto type = GetIntersectionPoints(tr1, tr2, pts);
assert(type == COPLANE);
assert(pts.size() == 0);
}
{
Triangle tr1(Point3d(0, 0, 0), Point3d(0, 0, 1), Point3d(1, 1, 0));
Triangle tr2(Point3d(1, 0, 1), Point3d(0, 1, 1), Point3d(1, 1, 1));
std::vector<Point3d> pts;
auto type = GetIntersectionPoints(tr1, tr2, pts);
assert(type == DISJOINT);
assert(pts.size() == 0);
}
}
int main()
{
TriIntersectTestCase();
return 0;
}