• 也谈走台阶问题


    问题

    刚才在首页看到一篇博客,说的是腾讯的一道面试题:一个楼梯有50个台阶,每一步可以走一个台阶,也可以走两个台阶,请问走完这个楼梯共有多少种方法?博主把这题分析的很麻烦。引来很多人围观。我以前也碰到过这个问题。写出来和大家分享一下。

    举个例子,假设有3个台阶,则有三种走法:分别是,1-1-1, 1-2, 2-1。

    分析

    很简单的一道题,学过组合数学的人很快就能想到,这是一个递推关系。假设走完k个台阶有f(k)种走法。

    • k = 1时,f(k) = 1
    • k = 2时,f(k) = 2
    • k = n时,第一步走一个台阶,剩n-1个台阶,有f(n - 1)种走法。第一步走两个台阶,剩n-2个台阶,有f(n - 2)种走法。所以共有f(n - 1) + f(n - 2)种走法。

    于是有如下公式

    代码

    int count(unsigned int n)
    {
    if(n == 1)
    return 1 ;
    if(n == 2)
    return 2 ;
    else
    return count(n - 1) + count(n - 2) ;
    }

    具体是怎么走的呢?

    上面只给出了有多少种走法,那么具体每一种走法是怎么走的呢?比如n=4时,五种走法分别如下:

    1,1,1,1

    1,1,2

    1,2,1

    2,1,1

    2,2

    我们用一个整型数组来存放每一步的内容,1表示这步走了一个台阶,2表示这步走了两个台阶。回溯法搞定。代码如下。

    void count(int n, int t)
    {
    if(n < 0)
    return ;
    if (n == 0)
    Output(step, t) ;
    else
    {
    for (int i = 1; i <= 2; ++i)
    {
    step[t]
    = i ;
    count(n
    - i, t + 1) ;
    }
    }
    }

    类似的问题

    与此题类似的问题有很多,比如铺地砖问题,自然数拆分等。

    铺地砖问题

    有一个长度为n,宽度为2的地面,有若干块长为2,宽为1的地砖,请问用此地砖铺完这个地面共有多少种方法?

    分析一下,假设铺完长度为n的地面有f(n)种方法,如果第一块地砖竖起来铺,还剩下长度为n-1的地面,有f(n-1)种方法。如下图。

    如果第一块地转横着铺,那么还剩下长度为n-2的地面,有f(n-2)种铺法。如下图。

    所以这道题与上面的题解法完全一样。不同的题目,相同的模型而已。

    自然数拆分

    给定一个自然数n,将其拆分为若干个自然数字之和,请问有多少种方法?举个例子,n=4时,可以拆分为1-1-1-1,1-1-2,1-3,2-2。

    这题和上面的题很像,不过上面的问题是排列问题,而这题是组合问题,比如n=4时,1-1-2,1-2-1,2-1-1这三种只能算一个拆分。在上面的基础上,去掉重复的组合即可。

    作者:zdd
    出处:http://www.cnblogs.com/graphics/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
  • 相关阅读:
    批量插入测试脚本
    Show Profile分析sql语句的资源消耗
    慢查询日志
    ORDER BY优化
    Join查询
    Explain(执行计划)分析
    索引
    MySQL中的DML(数据操作语言)和DQL(数据查询语言)
    MySQL中的DDL(数据定义语言)和DCL(数据控制语言)
    MySQL架构体系介绍
  • 原文地址:https://www.cnblogs.com/graphics/p/2176635.html
Copyright © 2020-2023  润新知