• 机器学习之最小二乘法


    1.背景:

         1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥伯斯根据高斯计算出来的轨道重新发现了谷神星。

          高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中,而法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。两人曾为谁最早创立最小二乘法原理发生争执。

       1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,见高斯-马尔可夫定理。 

                                                                ----维基百科

    2. 最小二乘法在机器学习中被用来

    3. 高中关于最小二乘法估计

        概括:

            假设有若干个样本点,(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),求解直线y=kx+b,是的这些样本点到直线的距离最小.

       我们高中的求解方式也是这样的:

                        

       展开为:  

                        min_sum = [y1- (kx1+b)]^2+[y2- (kx2+b)]^2+[y3- (kx3+b)]^2+[y4- (kx4+b)]^2+[y5- (kx5+b)]^2 

       就是各个点到我们设定的直线的欧式距离

        化简为: 

         

    以上就是我们高中对于最小二乘法的最初认知. 这个求解的过程,我们称之为最小二乘法,而求解的这条直线,我们称之为线性回归,线性回归用来近似的预测数据的真是情况.

    举个例子:(此题来自:北师大版高中数学)

           从某所高中随机抽取一些可爱的萌妹子,就比如6个女生好了,测出她们的体重和身高如下表,现在来了一个60kg的女生,求问它的身高会有多高?

    女生数据
    女生ID 1 2 3 4 5 6 7 8
    身高 165 165 157 170 175 165 155 170
    体重 48 57 50 54 64 61 43 59

          

    用python画图来表示这些数据好了:

     1 # encoding: utf8
     2 import matplotlib
     3 import matplotlib.pyplot as plt
     4 from matplotlib.font_manager import FontProperties
     5 from sklearn.linear_model import LinearRegression
     6 from scipy import sparse
     7 
     8 print matplotlib.matplotlib_fname()  # 将会获得matplotlib包所在文件夹
     9 font = FontProperties()
    10 plt.rcParams['font.sans-serif'] = ['Droid Sans Fallback']  # 指定默认字体
    11 plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
    12 
    13 plt.figure()
    14 plt.title(u' 可爱女生的数据 ')
    15 plt.xlabel(u'x 体重')
    16 plt.ylabel(u'y 身高')
    17 plt.axis([40, 80, 140, 200])
    18 plt.grid(True)
    19 x = [[48], [57], [50], [54], [64], [61], [43], [59]]
    20 y = [[165], [165], [157], [170], [175], [165], [155], [170]]
    21 plt.plot(x, y, 'k.')
    22 model = LinearRegression()
    23 model.fit(x, y)
    24 # y2 = model.predict(x)
    25 # plt.plot(x, y2, 'g-')
    26 plt.show()

    散点图:

    对于这个例子,我们可以使用上面的公式,求解出回归方程,并可以得到方程拟合的该女生的身高值,但是这太麻烦了 , 毕竟高中还是太too yong too simple了~

    4. 大学关于最小二乘法

       基于上面的那个问题,我们大学有没有更好的一点的求解方式 ?

     4.1 大学对于最小二乘法的概括:

              找到那样一条函数曲线使得观测值的残差平方之和最小.   通俗的讲:见高中部分概括

      4.2 继续上面的这个问题思路:

      我们已知这些数据:

          f(x,y) = [y1- (kx1+b)]^2+[y2- (kx2+b)]^2+[y3- (kx3+b)]^2+[y4- (kx4+b)]^2+[y5- (kx5+b)]^2+[y6- (kx6+b)]^2+[y7- (kx7+b)]^2+[y7- (kx7+b)]^2 

          如果存在最大值,那么只需要满足f(x,y)对于x,y的一阶偏导数均为0

          

        求解得:

               k= 0.849  , b =85.172

    所以预测值为:

              y = 0.849x - 85.172  将y = 60kg  代入求解得:  x = 170.99175

    我们再使用Python求解一次:

     1 # encoding: utf8
     2 import matplotlib
     3 import matplotlib.pyplot as plt
     4 from matplotlib.font_manager import FontProperties
     5 from scipy.optimize import leastsq
     6 from sklearn.linear_model import LinearRegression
     7 from scipy import sparse
     8 import numpy as np
     9 
    10 # 拟合函数
    11 def func(a, x):
    12     k, b = a
    13     return k * x + b
    14 
    15 
    16 # 残差
    17 def dist(a, x, y):
    18     return func(a, x) - y
    19 
    20 
    21 font = FontProperties()
    22 plt.rcParams['font.sans-serif'] = ['Droid Sans Fallback']  # 指定默认字体
    23 plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
    24 
    25 plt.figure()
    26 plt.title(u' 可爱女生的数据 ')
    27 plt.xlabel(u'x 体重')
    28 plt.ylabel(u'y 身高')
    29 plt.axis([40, 80, 140, 200])
    30 plt.grid(True)
    31 x = np.array([48.0, 57.0, 50.0,54.0, 64.0, 61.0, 43.0, 59.0])
    32 y = np.array([165.0, 165.0,157.0, 170.0, 175.0, 165.0, 155.0, 170.0])
    33 plt.plot(x, y, 'k.')
    34 
    35 param = [0, 0]
    36 
    37 var= leastsq(dist, param, args=(x, y))
    38 k, b = var[0]
    39 print k, b
    40 
    41 plt.plot(x, k*x+b, 'o-')
    42 
    43 plt.show()

    从图中,可以发现结果大致相符.

  • 相关阅读:
    吞吐量(TPS)、QPS、并发数、响应时间(RT)
    吞吐量(TPS)、QPS、并发数、响应时间(RT)
    ubuntu 14.04安装pycharm 社区版
    ubuntu 14.04安装pycharm 社区版
    卷积神经网络(4)----目标检测
    卷积神经网络(4)----目标检测
    卷积神经网络(4)----目标检测
    如何搭建自己CDN服务器
    flask
    s16 计算机网络基础
  • 原文地址:https://www.cnblogs.com/gongxijun/p/5865999.html
Copyright © 2020-2023  润新知