• HDU----(4291)A Short problem(快速矩阵幂)


    A Short problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1716    Accepted Submission(s): 631


    Problem Description
      According to a research, VIM users tend to have shorter fingers, compared with Emacs users.
      Hence they prefer problems short, too. Here is a short one:
      Given n (1 <= n <= 1018), You should solve for
    g(g(g(n))) mod 109 + 7

      where
    g(n) = 3g(n - 1) + g(n - 2)

    g(1) = 1

    g(0) = 0
     
    Input
      There are several test cases. For each test case there is an integer n in a single line.
      Please process until EOF (End Of File).
     
    Output
      For each test case, please print a single line with a integer, the corresponding answer to this case.
     
    Sample Input
    0 1 2
     
    Sample Output
    0 1 42837
     
    Source
     
    此题出得比较精妙,
    分析:假设g(g(g(n)))=g(x),x可能超出范围,但是由于mod 10^9+7,所以可以求出x的循环节

    求出x的循环节后,假设g(g(g(n)))=g(x)=g(g(y)),即x=g(y),y也可能非常大,但是由x的循环节可以求出y的循环节

    如何求循环节点:

     1 /*采用事先处理自己可以求出来*/
     2 LL work(LL mod){  
     3   LL a=0,b=1;
     4     for(LL i=2;;++i)
     5     {    
     6       a=(b*3+a)%mod;
     7         a=a^b;
     8         b=a^b;
     9         a=a^b;
    10         if(a == 0 && b == 1)  return i;
    11  }

    所以依次将mod1带入得到mod2=222222224;

    然后将mod2带入得到mod3=183120;

    然后就是快速矩阵了。

    代码:

     1 //#define LOCAL
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #define LL __int64
     6 using namespace std;
     7 const int mod1 =1000000007;
     8 const int mod2=222222224;
     9 const int mod3=183120;
    10 
    11 LL mat[2][2];
    12 LL ans[2][2];
    13 LL n;
    14 
    15 void Matrix(LL a[][2],LL b[][2],LL mod)
    16 {
    17     LL cc[2][2]={0};
    18     for(int i=0;i<2;i++)
    19     {
    20       for(int j=0;j<2;j++)
    21       {
    22           for(int k=0;k<2;k++)
    23         {
    24             cc[i][j]=(cc[i][j]+a[i][k]*b[k][j])%mod;
    25         }
    26       }
    27     }
    28     for(int i=0;i<2;i++)
    29     {
    30       for(int j=0;j<2;j++)
    31       {
    32           a[i][j]=cc[i][j];
    33       }
    34     }
    35 }
    36 
    37 void pow(LL w,LL mod)
    38 {
    39   while(w>0)
    40   {
    41     if(w&1) Matrix(ans,mat,mod);
    42      w>>=1;
    43      if(w==0)break;
    44      Matrix(mat,mat,mod);
    45   }
    46 }
    47 void input(LL w,LL mod)
    48 {
    49      mat[0][0]=3;
    50      mat[0][1]=mat[1][0]=1;
    51      mat[1][1]=0;
    52      ans[0][0]=ans[1][1]=1;
    53      ans[0][1]=ans[1][0]=0;
    54      pow(w,mod);
    55 //     printf("%I64d
    ",ans[0][0]);
    56 }
    57 void work(int i,__int64 w)
    58 {
    59   if(i==4||w==0||w==1)
    60   {
    61       if(w==0)
    62          printf("0
    ");
    63       else if(w==1)
    64           printf("1
    ");
    65       else
    66       printf("%I64d
    ",ans[0][0]);
    67       return ;
    68   }
    69   LL mod;
    70   if(i==1)mod=mod3;
    71   else if(i==2)mod=mod2;
    72   else if(i==3)mod=mod1;
    73   input(w-1,mod);
    74   work(i+1,ans[0][0]);
    75 }
    76 int main()
    77 {
    78   #ifdef LOCAL
    79    freopen("test.in","r",stdin);
    80   #endif
    81   while(scanf("%I64d",&n)!=EOF)
    82      work(1,n);
    83  return 0;
    84 }
    View Code
  • 相关阅读:
    Java线程九:线程的调度-让步
    Java线程八:线程的调度-优先级
    Java线程七:线程的调度-休眠
    Java线程六:线程的交互
    丸の内の霊 5
    丸の内の霊 4
    丸の内の例 3
    丸の内の例 2
    幽霊物件 1
    質問力 D
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3986356.html
Copyright © 2020-2023  润新知