• elasticsearch 深入 —— Search Type检索类型


    在此我们再给出那个查询的代码:

    $ curl -XGET localhost:9200/startswith/test/_search?pretty -d '{
            "query": {
            "match_phrase_prefix": {
               "title": {
                 "query": "d",
                 "max_expansions": 5
               }
             }
           }
         }' | grep title
    
          "_score" : 1.0, "_source" : {"title":"drunk"}
          "_score" : 0.30685282, "_source" : {"title":"dzone"}
          "_score" : 0.30685282, "_source" : {"title":"data"}
          "_score" : 0.30685282, "_source" : {"title":"drive"}
    

    为何文档“drunk”分数为1.0,而其余的分数是0.3?难道这些文档不应该是相同的分数么,因为他们都同等地匹配了“d”。答案是肯定的,但是这个分数本身也有比较合理的地方。

    相关性打分

    ES使用的打分算法包含了称之为“TF-IDF”的统计信息来帮助计算处于那个索引中的文档的相关性。

    TFIDF基本思想就是“一个项在文档中出现的次数越多,那么这个文档更加相关;但相关性会被这个项在整个文档库中的次数削弱”。

    稀有项出现在相对少的文档中,那么任何查询匹配了一个稀有项的相关性就变得很高。相反,平常项到处都有,他们的相关性就低了。

    当用户执行一个搜索时,ES面对一个有趣的困境。你的查询需要找到所有相关的文档,但是这些文档分布在你的cluster中的任何数目的shard中。

    每个shard是一个Lucene的索引,保存了自身的TF和DF统计信息。一个shard只知道在其自身中出现的次数,而非整个cluster。

    但是相关算法使用了TF-IDF,它需要知道对于整个索引的而不是对每个shard的TF和DF么?

    默认搜索类型:query then fetch

    答案:是也不是。默认情形下,ES会使用一个称之为Query then fetch的搜索类型。它运作的方式如下:

    1. 发送查询到每个shard
    2. 找到所有匹配的文档,并使用本地的Term/Document Frequency信息进行打分
    3. 对结果构建一个优先队列(排序,标页等)
    4. 返回关于结果的元数据到请求节点注意,实际文档还没有发送,只是分数
    5. 来自所有shard的分数合并起来,并在请求节点上进行排序,文档被按照查询要求进行选择
    6. 最终,实际文档从他们各自所在的独立的shard上检索出来
    7. 结果被返回给用户

    这个系统一般是能够良好地运作的。大多数情形下,你的索引有足够的文档来平滑Term/Document frequency统计信息。因此,尽管每个shard不一定拥有完整的关于整个cluster的frequency信息,结果仍然足够好,因为fequency在每个地方基本上是类似的。

    但是在我们开头提起的那个查询,默认搜索类型有时候会失败。

    dfs query then fetch

    在上篇文章中,我们默认建立了一个索引,ES通常使用5个shard。接着插入了5个文档进入索引,向ES发送请求返回相关结果和准确的分数。其结果并不是很公平,对吧?

    这是由于默认的搜索类型导致的,每个shard仅仅包含一个或者两个文档(ES使用hash确保随机分布)。当我们要求ES计算分数时候,每个shard仅仅拥有关于五个文档的一个很窄的视角。所以分数是不准确的。

    幸运的是,ES并没有让你无所适从。如果你遇到了这样的打分偏离的情形,ES提供了一个称为“DFS Query Then Fetch”。这个过程基本和Query Then Fetch类型,除了它执行了一个预查询来计算整体文档的frequency。

    1. 预查询每个shard,询问Term和Document frequency
    2. 发送查询到每个shard
    3. 找到所有匹配的文档,并使用全局的Term/Document Frequency信息进行打分
    4. 对结果构建一个优先队列(排序,标页等)
    5. 返回关于结果的元数据到请求节点注意,实际文档还没有发送,只是分数
    6. 来自所有shard的分数合并起来,并在请求节点上进行排序,文档被按照查询要求进行选择
    7. 最终,实际文档从他们各自所在的独立的shard上检索出来
    8. 结果被返回给用户

    如果我们使用这个新的搜索类型,那么获得的结果更加合理了(这些都一样的):

    $ curl -XGET 'localhost:9200/startswith/test/_search?pretty=true&search_type=dfs_query_then_fetch' -d '{
            "query": {
            "match_phrase_prefix": {
               "title": {
                 "query": "d",
                 "max_expansions": 5
               }
             }
           }
         }' | grep title
    
          "_score" : 1.9162908, "_source" : {"title":"dzone"}
          "_score" : 1.9162908, "_source" : {"title":"data"}
          "_score" : 1.9162908, "_source" : {"title":"drunk"}
          "_score" : 1.9162908, "_source" : {"title":"drive"}
    

    结论

    当然,更好准确性不是免费的。预查询本身会有一个额外的在shard中的轮询,这个当然会有性能上的问题(跟索引的大小,shard的数量,查询的频率等)。在大多数情形下,是没有必要的,拥有足够的数据可以解决这样的问题。

    但是有时候,你可能会遇到奇特的打分场景,在这些情况中,知道如何使用DFS query then fetch去进行搜索执行过程的微调还是有用的。

  • 相关阅读:
    Python 函数式编程学习
    Perl 学习笔记-目标操作
    Ubuntu14.04-LTS 从系统安装到配置可用
    Perl 学习笔记-文件测试
    Perl 学习笔记-模块
    插曲 强大的神器 vmware
    18 11 16 网络通信 ---- 多线程 同步概念 解决资源互斥的问题
    18 11 15 网络通信 ---- 多任务----线程 threading
    18 11 14 案例 下载文件后端编写
    18 11 13 装了ssd 继续 网络通信 tcp 客户端的创建
  • 原文地址:https://www.cnblogs.com/gmhappy/p/11864051.html
Copyright © 2020-2023  润新知