• 6492. 【GDOI2020模拟03.04】多项式


    题目描述


    假的,n<=10^5

    题解

    (本题中倍数可以为负)

    满足条件的p要么是|Ai|(|Ai|≠0)的gcd的约数,要么原式中存在(prod_{i=0}^{p-1}{(x-i)})

    神奇结论:(prod_{i=0}^{p-1}{(x-i)}=x^p-x;(mod;p) ; p in prime)

    证明: https://www.cnblogs.com/Dup4/p/10750749.html

    大概是右边=x(x^(p-1)-1),根据费马小定理等于0,和左边的点值完全一致

    随便枚举一下p,多项式除法O(n)判断即可

    据说会卡常?

    code

    #include <bits/stdc++.h>
    #define fo(a,b,c) for (a=b; a<=c; a++)
    #define fd(a,b,c) for (a=b; a>=c; a--)
    #define abs(x) ((x)>0?(x):-(x))
    #define ll long long
    #define file
    using namespace std;
    
    ll a[100001],b[100001],s;
    int p[100001],ans[200001],n,i,j,k,l,tot,len,S;
    bool f[100001];
    
    ll gcd(ll n,ll m)
    {
    	ll r=n%m;
    	
    	while (r)
    	n=m,m=r,r=n%m;
    	
    	return m;
    }
    
    void init()
    {
    	int i,j,k,l;
    	
    	fo(i,2,n)
    	{
    		if (!f[i])
    		p[++len]=i;
    		
    		fo(j,1,len)
    		if (1ll*i*p[j]<=n)
    		{
    			f[i*p[j]]=1;
    			
    			if (!(i%p[j]))
    			break;
    		}
    		else
    		break;
    	}
    }
    
    void pd(int p)
    {
    	int i;
    	
    	fd(i,n,p)
    	{
    		b[i-p+1]=(b[i-p+1]+b[i])%p;
    		b[i]=0;
    	}
    	fo(i,0,n) if (b[i]) return;
    	
    	ans[++tot]=p;
    }
    
    int main()
    {
    	freopen("poly.in","r",stdin);
    	#ifdef file
    	freopen("poly.out","w",stdout);
    	#endif
    	
    	scanf("%d",&n);
    	fd(i,n,0)
    	{
    		scanf("%lld",&a[i]);
    		
    		if (a[i])
    		s=(s)?gcd(s,abs(a[i])):abs(a[i]);
    	}
    	
    	init();
    	
    	fo(i,1,len)
    	if (s%p[i] && !(a[0]%p[i]))
    	{
    		fo(j,0,n) b[j]=a[j]%p[i];
    		pd(p[i]);
    	}
    	
    	S=floor(sqrt(s));
    	fo(i,2,S)
    	if (!(s%i))
    	{
    		ans[++tot]=i;
    		while (!(s%i))
    		s/=i;
    	}
    	if (s>1) ans[++tot]=s;
    	
    	if (tot)
    	sort(ans+1,ans+tot+1);
    	
    	fo(i,1,tot)
    	printf("%d
    ",ans[i]);
    	
    	fclose(stdin);
    	fclose(stdout);
    	
    	return 0;
    }
    
  • 相关阅读:
    安装sublime text2 for ubuntu
    ruby中Regexp用法
    rvm is not a function的解决方法
    解决启动mongod 时,出现addr already in use错误
    rails中常用的插件
    在数据库中存储层次数据
    Formtastic: Forms Made Crazy Easy for Rails Developers
    rails安全性
    Rails 增加一个模型(model)
    RPC框架实现思路浅析
  • 原文地址:https://www.cnblogs.com/gmh77/p/12431974.html
Copyright © 2020-2023  润新知