• acm寒假特辑 1月19日 CodeForces


    D - 4 CodeForces - 472A

    One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.

    For example, there is a statement called the “Goldbach’s conjecture”. It says: “each even number no less than four can be expressed as the sum of two primes”. Let’s modify it. How about a statement like that: “each integer no less than 12 can be expressed as the sum of two composite numbers.” Not like the Goldbach’s conjecture, I can prove this theorem.

    You are given an integer n no less than 12, express it as a sum of two composite numbers.

    Input
    The only line contains an integer n (12 ≤ n ≤ 106).

    Output
    Output two composite integers x and y (1 < x, y < n) such that x + y = n. If there are multiple solutions, you can output any of them.

    Examples
    Input
    12
    Output
    4 8
    Input
    15
    Output
    6 9
    Input
    23
    Output
    8 15
    Input
    1000000
    Output
    500000 500000
    Note
    In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output “6 6” or “8 4” as well.

    In the second example, 15 = 6 + 9. Note that you can’t output “1 14” because 1 is not a composite number.

    题目大意:一个数拆成两个不相同的合数(合数指:自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。)。

    题目思想:①因为大部分偶数都为合数所以 i(偶数) 从4开始试探,判断n-i是否为合数。
    故可两者都为合数。
    ②还有一种偷懒的办法,4,9为合数,偶数则用i=4,奇数则用i=9,则n-i始终为偶数,除了2以外的偶数都为合数。输出 i 与 n-i。

    //miku saiko依然是旧题
    #include<iostream>
    using namespace std;
    int x(int a)//此处用于判断是否为合数
    {
    	for (int j = 2; j*j <= a;j++)
    	{
    		if (a % j == 0)
    			return 1;
    	}
    	return 0;
    };
    
    int main()
    {
    	int n;
    	cin >> n;
    	for (int i = 4;; i += 2)
    	{
    		if (x(n-i))
    		{
    			cout << i << ' ' << (n - i) << endl; 
    			break;
    		}
    	}
        return 0;
    }
    
  • 相关阅读:
    【C++ 基础 | vector 01】vector 用法及代码代码示例
    【力扣 101】706. 设计哈希映射
    【C++ 继承 | 智能指针 02】weak_ptr
    【C++ 继承 | 虚函数表 02】C++虚函数表剖析 ②
    【力扣 104】142. 环形链表 II
    【力扣 100】705. 设计哈希集合
    【力扣 099】641. 设计循环双端队列
    【C++ 基础 | 智能指针 01】shared_ptr 详解
    【力扣 103】141. 环形链表
    【力扣 102】695. 岛屿的最大面积
  • 原文地址:https://www.cnblogs.com/gidear/p/11773659.html
Copyright © 2020-2023  润新知