• Largest Rectangle in a Histogram


    2107: Largest Rectangle in a Histogram

    Time Limit: 1 Sec  Memory Limit: 64 MB
    Submit: 777  Solved: 220

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    HINT

    Huge input, scanf is recommended.

    如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{hi|L <= i < R}。

    L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

    R[i] = (j > i并且h[j] > h[i]的最小的j)

     1 #include <stdio.h>
     2 #define MAX_N 100000
     3 
     4 int n;
     5 int h[MAX_N];
     6 int L[MAX_N], R[MAX_N];
     7 int stack[MAX_N];
     8 
     9 long long max(long long a, long long b)
    10 {
    11     return (a > b) ? a : b;
    12 }
    13 
    14 void solve()
    15 {
    16     //计算L
    17     long long ans = 0;
    18     int t = 0;
    19     int i;
    20     for (i = 0; i < n; ++i)
    21     {
    22         while (t > 0 && h[stack[t-1]] >= h[i])
    23             t--;
    24         L[i] = (t == 0) ? 0 : (stack[t-1] + 1);
    25         stack[t++] = i;
    26     }
    27 
    28     //计算R
    29     t = 0;
    30     for (i = n - 1; i >= 0; --i)
    31     {
    32         while (t > 0 && h[stack[t-1]] >= h[i])
    33             t--;
    34         R[i] = (t == 0) ? n : stack[t-1];
    35         stack[t++] = i;
    36     }
    37 
    38     for (i = 0; i < n; ++i)
    39     {
    40         ans=max ( ans, ( long long)h[i]*( R[i]- L[i]));
    41     }
    42     printf("%lld
    ", ans);
    43 }
    44 
    45 int main(void){
    46    // freopen("a.txt","r",stdin);
    47     int i;
    48     while (scanf("%d", &n) != EOF && n != 0)
    49     {
    50         for (i = 0; i < n; ++i)
    51             scanf("%d", &h[i]);
    52         solve();
    53     }
    54 
    55     return 0;
    56 }
    View Code

     Acknowledge:jdplus     http://blog.csdn.net/jdplus/article/details/20606673      

  • 相关阅读:
    视觉SLAM(五)特征点法视觉里程计 后续作业
    在TUMVI数据集上测试VINS-Fusion算法
    视觉SLAM作业(四) 相机模型与非线性优化
    视觉SLAM(三)李群与李代数 后续作业
    -- Could not find the required component 'pcl_ros'. The following CMake error indicates that you either
    ZED stereolabs 配置踩过的坑
    视觉SLAM十四讲实验补充
    视觉SLAM十四讲(第二版)第十二讲笔记
    视觉SLAM十四讲(第二版)第十一讲笔记
    视觉SLAM十四讲(第二版)第十讲笔记
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4191149.html
Copyright © 2020-2023  润新知