• Latex常用内容


    \[X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| \]

    \[\begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} \]

    \[\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right\} \]

    \[X=\begin{pmatrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{pmatrix} \]

    1. 希腊字母表

    \Sigma: \(\Sigma\)

    \[\begin{align*} RQSZ \\ \mathcal{RQSZ} \\ \mathfrak{RQSZ} \\ \mathbb{RQSZ} \end{align*} \]

    \[\begin{align*} 3x^2 \in R \subset Q \\ \mathnormal{3x^2 \in R \subset Q} \\ \mathrm{3x^2 \in R \subset Q} \\ \mathit{3x^2 \in R \subset Q} \\ \mathbf{3x^2 \in R \subset Q} \\ \mathsf{3x^2 \in R \subset Q} \\ \mathtt{3x^2 \in R \subset Q} \end{align*} \]

    2. 上下标、根号、省略号、空格

    • 下标:_ x^2 \(\Longrightarrow\) $ x^2$

    • 上标:^ x_i\(\Longrightarrow\) \(x_i\)

    • 根号:\sqrt | y\sqrt{x}\(\Longrightarrow\) \(y\sqrt{x}\)

    • 省略号:

      \dots \(\Longrightarrow\dots\)

      \cdots \(\Longrightarrow\cdots\)

      \ddots \(\Longrightarrow\ddots\)

    • 括号

    两个quad空格 a \qquad b \(a \qquad b\) 两个m的宽度
    quad空格 a \quad b \(a \quad b\) 一个m的宽度
    大空格 a\ b \(a\ b\) 1/3m宽度
    中等空格 a;b \(a\;b\) 2/7m宽度
    小空格 a,b \(a\,b\) 1/6m宽度
    没有空格 ab \(ab\)
    紧贴 a!b \(a\!b\) 缩进1/6m宽度

    3. 运算符

    • 求和: \sum_1^n\(\Longrightarrow\) \(\sum_1^n\)
    • 积分:\int_1^n \(\Longrightarrow\) \(\int_1^n\)
    • 极限:lim_{x \to \infty}\(\Longrightarrow\) \(lim_{x \to \infty}\)
    • 分数:\frac{2}{3} \(\Longrightarrow\) $\frac{2}{3} $
    • 开方:\sqrt[2]{x} \(\Longrightarrow\) \(\sqrt[2]{x}\)
    • 积 :\prod_{i=0}^n \(\Longrightarrow\) \(\prod_{i=0}^n\)














    f4. 箭头

    字符 含义
    \uparrow
    \downarrow
    \Uparrow
    \Downarrow
    \updownarrow
    \Updownarrow
    \rightarrow
    \leftarrow
    \Rightarrow
    \Leftarrow
    \leftrightarrow
    \Leftrightarrow
    \longrightarrow
    \longleftarrow
    \Longrightarrow
    \Longleftarrow
    \mapsto
    \longmapsto
    \hookleftarrow
    \hookrightarrow
    \leftharpoonup
    \rightharpoonup
    \leftharpoondown
    \rightharpoondown
    \rightleftharpoons
    \leadsto
    \nearrow
    \searrow
    \swarrow
    \nwarrow
    \nleftarrow
    \nrightarrow
    \nLeftarrow
    \nRightarrow
    \nleftrightarrow
    \nLeftrightarrow
    \dashrightarrow
    \dashleftarrow
    \leftleftarrows
    \leftrightarrows
    \Lleftarrow
    \twoheadleftarrow
    \leftarrowtail
    \looparrowleft
    \leftrightharpoons
    \curvearrowleft
    \circlearrowleft
    \Lsh
    \upharpoonleft
    \downharpoonleft
    \upuparrows
    \multimap
    \leftrightsquigarrow
    \rightrightarrows
    \rightleftarrows
    \twoheadrightarrow
    \rightarrowtail
    \looparrowright
    \rightleftharpoons
    \curvearrowright
    \circlearrowright
    \Rsh
    \downdownarrows
    \upharpoonright
    \downharpoonright
    \rightsquigarrow

    5. 分段函数

    f(n)=
    	\begin{cases}
    		n/2, & \text{if $n$ is even}\\
    		3n+1,& \text{if $n$ is odd}
    	\end{cases}
    

    \[f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} \]

    6. 方程组

    \left.
      \left\{
        \begin{array}{c}
          a_1x+b_1y+c_1z=d_1\\
          a_2x+b_2y+c_2z=d_2\\
          a_3x+b_3y+c_3z=d_3
        \end{array}
      \right.
      \right>
    

    \[ \left. \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. \right> \]

    7.矩阵

    7.1 基本语法

    • 起始标记 \begin{matrix},结束标记 \end{matrix}
    • 每一行末尾标记 \\
    • 行间元素之间用 & 分隔。
    \begin{matrix}
    0&1&1\\
    1&1&0\\
    1&0&1\\
    \end{matrix}
    

    \[ \begin{matrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{matrix} \]

    7.2 矩阵边框

    • 在起始、结束标记用下列词替换 matrix
    • pmatrix:小括号边框
    • bmatrix:中括号边框
    • Bmatrix:大括号边框
    • vmatrix:单竖线边框
    • Vmatrix:双竖线边框
    \begin{vmatrix}
    0&1&1\\
    1&1&0\\
    1&0&1\\
    \end{vmatrix}
    

    \[\begin{vmatrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{vmatrix} \]

    7.3 省略元素

    • 横省略号:\cdots
    • 竖省略号:\vdots
    • 斜省略号:\ddots
    \begin{bmatrix}
    {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
    {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
    {\vdots}&{\vdots}&{\ddots}&{\vdots}\\
    {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
    \end{bmatrix}
    

    \[\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} \]

    7.4 阵列

    • 需要array环境:起始、结束处以{array}声明
    • 对齐方式:在{array}后以{}逐行统一声明
    • 左对齐:l 居中:c 右对齐:r
    • 竖直线:在声明对齐方式时,插入 | 建立竖直线
    • 插入水平线:\hline
    \begin{array}{c|lll}
    {↓}&{a}&{b}&{c}\\
    \hline
    {R_1}&{c}&{b}&{a}\\
    {R_2}&{b}&{c}&{c}\\
    \end{array}
    

    \[\begin{array}{c|lll} {↓}&{a}&{b}&{c}\\ \hline {R_1}&{c}&{b}&{a}\\ {R_2}&{b}&{c}&{c}\\ \end{array} \]

    8.常用公式

    8.1 线性模型

    h(\theta) = \sum_{j=0} ^n \theta_j x_j
    

    \[h(\theta) = \sum_{j=0} ^n \theta_j x_j \]

    8.2 均方误差

    J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2
    

    \[J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 \]

    8.3 求积

    H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}
    

    \[H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} \]

    8.4 批梯度下降

    \[\frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j \]

    \[\begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\ &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j \end{align} \]


    8.5 贝叶斯、先验、后验估计、似然估计

    \[\begin{align} \overbrace{P(x,y|z,u)}^{后验概率} &= \frac{P(z,u|x,y)P(x,y)}{P(z,u)}\\ &\approx \underbrace{P(z,u|x,y)}_{似然} \ \underbrace{P(x,y)}_{先验概率} \end{align} \]

    \[\begin{align} (x,y)^*_{MAP} &=argmax{P(x,y∣z,u)} \\ &=argmax{\frac{P(z,u|x,y)P(x,y)}{\underbrace{P(z,u)}_{此项与x,y无关,可以去掉}}} \\ &=argmax{{P(z,u|x,y)P(x,y)}} \end{align} \]

    8.6 任意维高斯分布

    \[P(x)=\frac{1}{\sqrt{(2\pi)^Ndet(\Sigma)}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) \\ \Downarrow\Downarrow\Downarrow 负对数\\ -ln(P(x)) = \frac{1}{2}ln((2\pi)^Ndet(\Sigma))+\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu) \\ \Downarrow\Downarrow\Downarrow 负对数\\ (x)^*_{MLE}=argmax(P(x))=argmin((x-\mu)^T\Sigma^{-1}(x-\mu)) \]

    8.7 高斯牛顿法求导

    \[\begin{align} \triangle x^* &= \underset{\triangle x}{argmin} \frac{1}{2}||f(x+\triangle x)||^2 \\ &\approx ||f(x) + J(x)^T \triangle x ||^2 \\ &=\frac{1}{2}({||f(x)||^2+2f(x)J(x)^T\triangle x + \triangle x^TJ(x)J(x)^T\triangle x}) \\ \\ &\downdownarrows{令其求导等于0} \\ \\ &\underbrace{J(x)J(x)^T}_{H(x)}\triangle x = \underbrace{-J(x)f(x) }_{g(x)} \end{align} \\ \]

    引用:

  • 相关阅读:
    Flink集群模式部署及案例执行
    Solr查询解析及内核剖析
    Spark Streaming流计算核心概念
    Kaldi语音识别CVTE模型实战
    Kaldi基础代码库及建模
    Kaldi样例实战
    Solr文本分析剖析【文本分析、分词器详解、自定义文本分析字段及分词器】
    Flink场景分析与比较【事件驱动、数据分析、数据管道】
    什么是Apache Flink实时流计算框架?
    基于Tesseract实现图片文字识别
  • 原文地址:https://www.cnblogs.com/geoffreyone/p/15923254.html
Copyright © 2020-2023  润新知