• [Ccodeforces 736C] Ostap and Tree


    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K.

    树形DP.

    设置状态f[i][j]:

    当j <= K时:

    合法状态,表示i的子树中到根的最近黑点距离为j的方案数.

    当 K < j <= 2K时:

    不合法状态,表示i的子树中,需要在上面补充黑点,且这个黑点到i的距离应该至多为(2K - j + 1).

    对于这个状态的另外一种理解方式是:i的子树中,距离i最近的黑点距离超过K,距离i最远的黑点距离为j,方案数.

    设计这样状态的动机在于:

    如果仅仅有j <= K的状态,那么可能仅仅满足了某些点的要求,而没有满足所有点, 或者, 仅仅考虑子树中对于点的影响, 而不考虑祖先, 换言之, 状态具有后效性.

    这样的状态设置是精妙的, 实际编程中大大减少了编程复杂度.

    转移的时候, 依次加入点x的每一个儿子树, 然后枚举已经形成的树找到过的j, 和对于这个子树的k:

    如果j + (k + 1) <= 2K + 1, 那么说明把这个方案加到树里可以直接构成一个合法方案, 那么直接统计.

    否则,说明需要上面的黑点,那么放进不合法状态中.

    实现的时候开一个临时数组即可.

    具体方程和细节见代码.

    初始化的时候:

    f[x][0] = f[x][k+1] = 1;

    刚开始的时候只有x一个节点, 然后这个节点选与不选两种方案.

    答案统计f[1][i](i <= K)即可.

    示意图

    #include <cstdio>
    #include <algorithm>
    #define ll long long
    #define For(i,j,k) for(ll i=j;i<=k;i++)
    using namespace std;
    ll mo=1e9+7;
    ll poi[10001],F[10001],nxt[10001], dep[1001],f[1001][1001],tmp[1001],ans,n,k,x,y,cnt;
    bool vis[1001];
    inline void add(ll x,ll y){poi[++cnt]=y;nxt[cnt]=F[x];F[x]=cnt;}
    inline void dfs(ll x) {
        vis[x] = 1;
        f[x][0] = 1;
        f[x][k+1] = 1;
        for(ll i=F[x];i;i=nxt[i]) {
    	ll ne = poi[i];
    	if(vis[ne]) continue;
    	dep[ne] = dep[x] + 1;
    	dfs(ne);
    	For(j,0,2*k) tmp[j]=0;
    	For(j,0,2*k) For(t,0,2*k+1) {
    	    if(j+t<=2*k)	
    		tmp[min(j,t + 1)] += f[x][j] * f[ne][t], tmp[min(j,t+1)] %= mo;
    	    else 
    		tmp[max(j,t + 1)] += f[x][j] * f[ne][t], tmp[max(j,t+1)] %= mo;
    	}
    	For(j, 0,2*k)	f[x][j]=tmp[j];
        }
    }
    int main() {
    #ifdef orz
        freopen("input", "r", stdin);
    #endif
        scanf("%lld %lld", &n, &k);
        if(k == 0) return puts("1") & 0;
        For(i,1,n-1) {
    	scanf("%lld %lld", &x, &y);
    	add(x, y);
    	add(y, x);
        }
        dfs(1);
        For(i,0,k)	ans+=f[1][i],ans%=mo;
        printf("%lld", ans);
    }
    

    代码魔改自:
    一个神犇的博客

  • 相关阅读:
    jsoup 1.4.1 发布,超棒的 HTML 解析器
    NetBeans 时事通讯(刊号 # 126 Nov 24, 2010)
    利用cx_Freeze将py文件打包成exe文件(图文全解) 老爸的蒸面条 51CTO技术博客
    Newstyle Signal and Slot Support¶
    Python 标准库 urllib2 的使用细节
    cxfreeze package pyqt4 app with no backend terimal display
    Qt Widget Gallery
    Python32使用cxFreeze打包
    D3.js DataDriven Documents
    QT 的信号与槽机制介绍
  • 原文地址:https://www.cnblogs.com/gengchen/p/7416891.html
Copyright © 2020-2023  润新知