UVA 1356 - Bridge
题意:一个桥长为B,桥上建电线杆。杆高为H,两杆之间距离不超过D。电线杆总长为L,杆子都是等距的,如今建最少的电线杆。问这时候电线离地面高度是多少
思路:二分高度,求出电线长,推断长度够不够就可以。那么问题就变成怎么求弧长
求弧长公式为∫w/201+(f′(x)2)−−−−−−−−−−√,
建立坐标系使得f(x)=ax2,带入点(w/2, h)求出a。得到方程
那么问题就变成怎么求这个积分了
利用辛普森自适应法。去求就可以
代码:
#include <cstdio> #include <cstring> #include <cmath> const double eps = 1e-8; int t; double d, h, b, l, m, w; inline double F(double x) { double a = 4 * m / w / w; return sqrt(1 + 4 * a * a * x * x); } inline double simpson(double fa, double fb, double fc, double a, double c) { return (fa + 4 * fb + fc) * (c - a) / 6; } double asr(double a, double b, double c, double esp, double A, double fa, double fb, double fc) { double ab = (a + b) / 2, bc = (b + c) / 2; double fab = F(ab), fbc = F(bc); double L = simpson(fa, fab, fc, a, b), R = simpson(fb, fbc, fc, b, c); if (fabs(L + R - A) <= 15 * eps) return L + R + (L + R - A) / 15.0; return asr(a, ab, b, esp / 2, L, fa, fab, fb) + asr(b, bc, c, esp / 2, R, fb, fbc, fc); } double asr(double a, double c, double eps) { double b = (a + c) / 2; double fa = F(a), fb = F(b), fc = F(c); return asr(a, b, c, eps, simpson(fa, fb, fc, a, c), fa, fb, fc); } int main() { int cas = 0; scanf("%d", &t); while (t--) { scanf("%lf%lf%lf%lf", &d, &h, &b, &l); double n = ceil(b / d); l = l / n; w = b / n; double x = 0, y = h; while (fabs(x - y) > eps) { m = (x + y) / 2; if (2 * asr(0, w / 2, eps) < l) x = m; else y = m; } printf("Case %d: %.2lf ", ++cas, h - x); if (t) printf(" "); } return 0; }