• poj 3071 可能DP


    http://poj.org/problem?

    id=3071

    推方程不难,可是难在怎么算

    dp[i][j]表示第i场时第j仅仅队伍存活下来的概率 

    方程:dp[i][j]=sigma(dp[i-1][j]*p[j][k]*dp[i-1][k])

    j,k在同一场的条件:if(((k>>(i-1))^1)==(j>>(i-1)))即推断k的第i位前的数没有比过的是否与j的在同一棵子树上。(i从1取,j,k从0取)

    题解參考 http://blog.csdn.net/pbj1203/article/details/6950450


    //#pragma comment(linker, "/STACK:102400000,102400000")
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <iostream>
    #include <iomanip>
    #include <cmath>
    #include <map>
    #include <set>
    #include <queue>
    using namespace std;
    
    #define ls(rt) rt*2
    #define rs(rt) rt*2+1
    #define ll long long
    #define ull unsigned long long
    #define rep(i,s,e) for(int i=s;i<e;i++)
    #define repe(i,s,e) for(int i=s;i<=e;i++)
    #define CL(a,b) memset(a,b,sizeof(a))
    #define IN(s) freopen(s,"r",stdin)
    #define OUT(s) freopen(s,"w",stdout)
    const ll ll_INF = ((ull)(-1))>>1;
    const double EPS = 1e-8;
    const int INF = 100000000;
    const int MAXN = 1000;
    
    double p[MAXN][MAXN],dp[MAXN][MAXN];
    int N,n;
    
    int solve()
    {
         CL(dp,0);
         rep(i,0,n)/////////
            dp[0][i]=1;
        repe(i,1,N)
            rep(j,0,n)
                rep(k,0,n)
                    if(((k>>(i-1))^1) == (j>>(i-1)))
                        dp[i][j]+=dp[i-1][j]*dp[i-1][k]*p[j][k];
        int ans=-1;
        dp[0][0]=-1;
        rep(j,0,n)
            if(dp[N][j]>dp[0][0])
            {
                 ans=j;
                 dp[0][0]=dp[N][j];
            }
    
        return ans+1;
    
    }
    
    int main()
    {
        while(~scanf("%d",&N) && N!=-1)
        {
            n=1<<N;
            rep(i,0,n)
                rep(j,0,n)
                    scanf("%lf",&p[i][j]);
    
            printf("%d
    ",solve());
    
        }
        return 0;
    }
    


    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    安徽.NET俱乐部4月份活动图片
    C++ string和数字间的任意转换
    利用C++特性 析构对象(ScopeGuard.h)
    ffmpeg第三方库
    Apifox软件使用技巧
    工作流撤回(activity5)
    pom文件详解
    Java内部类详解成员内部类,局部内部类,匿名内部类,静态内部类
    Docker 详解
    JDK8 新特性 Lambda表达式
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4844279.html
Copyright © 2020-2023  润新知