• TODO-1-多机器人轨迹规划


    • 最近正在学习trajectory optimization,对于无人机系统的轨迹优化,思路都比较清晰了:
    1. minimum snap--闭式解或二次规划OOQP
    2. 基于硬约束的轨迹优化(走廊)--二次规划,NLopt, Moesk
    3. 基于软约束的轨迹优化--二次规划,NLopt
    • 对于无人车,近期看了李柏的《智能网联汽车协同决策与规划技术》:
    1. 建立最优控制问题,生成安全隧道,非线性规划,内点法IPM,求解器为Ipopt
    • 晚上看到了一篇论文,非常不错,正好可以学习一下无人车的轨迹优化具体是怎么实现的:

      《Efficient Trajectory Planning for Multiple Non-holonomic Mobile Robots via Prioritized Trajectory Optimization》

       文章也生成了走廊,轨迹优化求解采用Ipopt,并且也用到了cbs和ecbs,非常指的研读。

       https://github.com/LIJUNCHENG001/multi_robot_traj_planner

      总的来说,无人机,可以形成二次规划,凸优化求解器求解,无人车,NLP问题,用内点法求解器Ipopt。

    • 需要掌握三块内容:
    1. 走廊的生成要掌握,目前已经有刘思康无人机的走廊,李柏的无人车的走廊,本文的走廊,港科大的无人车走廊,高飞的无人机的走廊。
    2. 掌握建模的方法,即无人机模型的书写,无人车模型的书写,形成优化命题(c++)
    3. NloptOOQP的使用(无人机),Ipopt(无人车)的使用。
  • 相关阅读:
    缓存与清除缓存
    PHP文件缓存与memcached缓存 相比 优缺点是什么呢
    memcached的基本命令(安装、卸载、启动、配置相关)
    54点提高PHP编程效率 引入缓存机制提升性能
    登陆类
    格式化金额数与自动四舍五入
    如何用Ajax传一个数组数据
    CodeIgniter的缓存机制与使用方法
    CI框架缓存的实现原理
    PHP导出数据库方法
  • 原文地址:https://www.cnblogs.com/gaowensheng/p/14939585.html
Copyright © 2020-2023  润新知