http://fisherlei.blogspot.com/2012/12/leetcode-maximum-subarray.html
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array
the contiguous subarray
[−2,1,−3,4,−1,2,1,−5,4]
,the contiguous subarray
[4,−1,2,1]
has the largest sum = 6
.More practice:
» Solve this problemIf you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
[解题思路]
O(n)就是一维DP.
假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i], 在这里,当求取Max[i+1]时,
Max[i+1] = Max[i] + A[i+1], if (Max[i] + A[i+1] >0)
= 0, if(Max[i]+A[i+1] <0),如果和小于零,A[i+1]必为负数,没必要保留,舍弃掉
然后从左往右扫描,求取Max数字的最大值即为所求。
[Code]
1: int maxSubArray(int A[], int n) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: int sum = 0;
5: int max = INT_MIN;
6: for(int i =0; i < n ; i ++)
7: {
8: sum +=A[i];
9: if(sum>max)
10: max = sum;
11: if(sum < 0)
12: sum = 0;
13: }
14: return max;
15: }
但是题目中要求,不要用这个O(n)解法,而是采用Divide & Conquer。这就暗示了,解法必然是二分。分析如下:
假设数组A[left, right]存在最大值区间[i, j](i>=left & j<=right),以mid = (left + right)/2 分界,无非以下三种情况:
subarray A[i,..j] is
(1) Entirely in A[low,mid-1]
(2) Entirely in A[mid+1,high]
(3) Across mid
对于(1) and (2),直接递归求解即可,对于(3),则需要以min为中心,向左及向右扫描求最大值,意味着在A[left, Mid]区间中找出A[i..mid], 而在A[mid+1, right]中找出A[mid+1..j],两者加和即为(3)的解。
代码实现如下:
1: int maxSubArray(int A[], int n) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: int maxV = INT_MIN;
5: return maxArray(A, 0, n-1, maxV);
6: }
7: int maxArray(int A[], int left, int right, int& maxV)
8: {
9: if(left>right)
10: return INT_MIN;
11: int mid = (left+right)/2;
12: int lmax = maxArray(A, left, mid -1, maxV);
13: int rmax = maxArray(A, mid + 1, right, maxV);
14: maxV = max(maxV, lmax);
15: maxV = max(maxV, rmax);
16: int sum = 0, mlmax = 0;
17: for(int i= mid -1; i>=left; i--)
18: {
19: sum += A[i];
20: if(sum > mlmax)
21: mlmax = sum;
22: }
23: sum = 0; int mrmax = 0;
24: for(int i = mid +1; i<=right; i++)
25: {
26: sum += A[i];
27: if(sum > mrmax)
28: mrmax = sum;
29: }
30: maxV = max(maxV, mlmax + mrmax + A[mid]);
31: return maxV;
32: }
[注意]
考虑到最大和仍然可能是负数,所以对于有些变量的初始化不能为0,要为INT_MIN。
考虑到最大和仍然可能是负数,所以对于有些变量的初始化不能为0,要为INT_MIN。