• 在线学习--online learning


    在线学习 online learning

    Online learning并不是一种模型,而是模型的训练方法。能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的准确率。

    在线模型的评估之--Mistake Bound

    假设有一个模型完全预测正确,Mistake Bound表示的就是找到这个模型最多犯错的次数。

    用Halving算法来解决这个问题,算法步骤如下:

    所以犯错次数小于等于对模型集合数量求以2为底的对数。

     在线模型的评估之--Regret 后悔度

    Regret的求解举例

    Regret练习:

    在线学习模型的有效必要条件就是

     Online Learning训练过程也需要优化一个目标函数(红框标注的),但是和其他的训练方法不同, Online Learning要求快速求出目标函数的最优解,最好是能有解析解。

     

    在线学习流程:
    Learning的流程包括:将模型的预测结果展现给用户,然后收集用户的反馈数据,再用来训练模型,形成闭环的系统。

    在线学习模型之FTRL--Follow The Regularized Leader

    算法基本思想:

    在这里最后一步更新w的时候需要找到使得损失函数之和最小的w,在线学习是速度需要很快,但是一般这个损失函数不是很快可以求解的,需要找到一个代理的损失函数,使得损失函数可以快速求解。代理损失函数需要满足几个要求:
    1.代理损失函数比较容易求解,最好是有解析解
    2.Regret满足

    关于次梯度

     ftrl相关学习资料

  • 相关阅读:
    Arcgis Android 常见问题
    Arcgis Android 手动搭建开发环境
    Arcgis Android 坐标转换
    ArcGis Android 10.2.6更新文档翻译
    arcgis android 中shapefile的加载
    arcgis android 10.2.5开发环境配置
    so far so good
    做什么都要坚持,写blog也一样,
    WPF前台数据验证(红框)Validation.ErrorTemplate 附加属性
    WOSA/XFS及SP综述
  • 原文地址:https://www.cnblogs.com/fisherinbox/p/6761249.html
Copyright © 2020-2023  润新知