• pytorch | A 60 MINUTE BLITZ 代码+详细注释


    代码搬运自戳我
    同时感谢提供了详细学习笔记的maomao9173神仙

    PART1

    from __future__ import print_function
    import torch
    
    x = torch.empty(5, 3) 
    # empty -> 未初始化,随机值
    x = torch.rand(5, 3) 
    # rand -> [0, 1] 均匀随机
    x = torch.randn(5, 3) 
    # randn -> [0, 1] 正态分布
    x = torch.zeros(5, 3, dtype = torch.long)
    # zeros -> 全 0
    x = torch.tensor([5.5, 3])
    # 直接用数据构造 tensor
    x = x.new_ones(5, 3, dtype = torch.double)
    # new_ones : 获得一个n.m的张量,元素均为1,属性继承于张量x
    x = torch.randn_like(x, dtype = torch.float)
    # randn_like : 随机数
    print(x.size())
    # 展示张量的形状
    y = torch.rand(5, 3)
    print(x + y)
    print(torch.add(x, y))
    # 逐位相加,上面两个语句结果相同
    result = torch.empty(5, 3)
    torch.add(x, y, out = result)
    # 把 x 和 y 相加的结果存到 result 里面
    y.add_(x)
    y.copy_(x)
    # 把 x 加到 y 上去 / 把 x 拷到 y 里面去
    # 常见语法 : 带有"_"后缀的函数一般都是把结果存在当前变量里
    print(x[:, 1])
    # 遍历行的第一列输出
    x = torch.randn(4, 4)
    y = x.view(16)
    z = x.view(-1, 8)
    # view 表示将原矩阵改变性状(长宽比)
    # z 的第一维度尺寸会自动推断
    x = torch.randn(1)
    print(x)
    print(x.item())
    # 单元素tensor通过item获得其包含的值
    a = torch.ones(5)
    b = a.numpy()
    # tensor <-> numpy : 轻而易举
    a.add_(1)
    print(a)
    print(b)
    # 如果torch tensor在gpu上跑,那么把tensor给numpy
    # 和把numpy给tensor时,他们会占用同样的内存空间。
    import numpy as np
    a = np.ones(5)
    b = torch.from_numpy(a)
    np.add(a, 1, out = a)
    print(a)
    print(b)
    # All the tensors on the CPU except a CharTensor
    # support converting to Numpy and back
    if torch.cuda.is_available():
        device = torch.device("cuda")
        y = torch.ones_like(x, device = device)
        # ones_like : 返回一个用1填充的 和输入形状与类型一致的数组
        print(x)
        print(y)
        # 通过这种方法,直接创建一个gpu上的tensor
        # x = x.to(device)
        # z = x + y
        print(z)
        print(z.to("cpu", torch.double))
        # .to还可以同时改变dtype!
    

    PART2

    import torch
    import numpy as np
    '''
    torch.Tensor是autograd包里的核心类。如果把
    [.requires_grad]设置为True,它就会跟踪每一
    个操作,并在完成其他计算后,执行[.backward]
    进行反向传播,自动计算梯度。它所得到的结果会
    被累加到[.grad]属性中。
    '''
    
    # 使用[.detach()]来阻止它自动进行跟踪历史。
    # 也可以使用[with torch.no_grad()]
    # 避免它自动跟踪历史并占用空间。
    # .grad_fn: 是创建这个tensor的function
    x = torch.ones(2, 2, requires_grad = True)
    print(x)
    y = x + 2
    print(y)
    # y是通过一个操作创造的tensor而不是用户自行
    # 所以它有grad_fn
    print(y.grad_fn)
    z = y * y * 3
    out = z.mean()
    print(z, out)
    # mean函数求平均值
    a = torch.randn(2, 2)
    a = ((a * 3) / (a - 1))
    print(a.requires_grad)
    a.requires_grad_(True)
    print(a.requires_grad)
    b = (a * a).sum()
    print(b.grad_fn)
    # .requires_grad_改变requires_grad变量
    # requires_grad默认设置为False
    out.backward() # 进行反向传播
    print(x.grad_fn)
    x = x * x
    x.backward()
    print(x.grad)
    x = torch.randn(3, requires_grad = True)
    y = x * 2
    while y.data.norm() < 1000:
        y = y * 2
    # .data.norm()表示对数组里面(类型为float)所有值求平方和,然后开方
    print(y)
    # ones : 全1
    # zeros: 全0
    

    PART3

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            # 哇!又不会啦!
            # 1 input image channel, 6 output channels, 3x3 square convolution
            # kernel
            self.conv1 = nn.Conv2d(1, 6, 3)
            self.conv2 = nn.Conv2d(6, 16, 3)
            # 输入通道数 / 输出通道数 / 卷积核大小
            # 在pytorch中,定义层会默认使用HE初始化
            self.fc1 = nn.Linear(16 * 6 * 6, 120)
            # 输入张量大小 / 输出张量大小
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
            # an affine operation: y = Wx + b
    
        def forward(self, x):
            # Max polling over a (2, 2) window
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            # if the size is a square you can only specify a single number
            x = F.max_pool2d(F.relu(self.conv2(x)), (2,3))
            x = x.view(-1, self.num_flat_features(x))
            # num_flat_features把之前的张量铺开成一维的
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    
        def num_flat_features(self, x):
            size = x.size()[1:]
            # 哇 是不会的诶!
            num_features = 1
            for s in size:
                num_features *= s
            return num_features
    
    net = Net()
    print(net)
    params = list(net.parameters())
    # print(params)
    # print(params.size())
    print(params[0].size())
    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)
    net.zero_grad()
    out.backward(torch.randn(1, 10))
    output = net(input)
    target = torch.randn(10)
    # 这样得到的target形状是10,我们需要转化它为[1, 10]
    target = target.view(1, -1)
    # print(target.size())
    
    criterion = nn.MSELoss()
    loss = criterion(output, target)
    # print(loss)
    # print(loss.grad_fn)
    # print(loss.grad_fn.next_functions[0][0])
    # print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
    net.zero_grad()
    # 先清零梯度,不然会发生累积
    print('conv1.bias.grad before backward:')
    print(net.conv1.bias.grad)
    
    loss.backward()
    
    print('conv1.bias.grad after backward:')
    print(net.conv1.bias.grad)
    learning_rate = 0.01
    for f in net.parameters:
        f.data.sub_(f.grad.data * learning_rate)
    # 实现weight = weight - learning_rate * gradient
    import torch.optim as optim
    # 用这个包实现SGD / Nesterov-SGD / Adam / RMSProp.etc
    
    optimizer = optim.SGD(net.parameters(), lr = 0.01)
    # net的参数 / 学习率
    
    # in your training loop:
    optimizer.zero_grad() # zero the gradient buffers
    output = net(input)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step() # Do the update
    # 注意: 每次一定要做zero_grad
    

    PART4

    # What about data?
    
    # Generally, when you have to deal with image, text, audio 
    # or video data, you can use standard python packages that
    # load data into a numpy array. Then you can convert this 
    # array into a torch.*Tensor.
    
    # For images, packages such as Pillow, OpenCV are useful
    
    # For audio, packages such as scipy and librosa
    
    # For text, either raw Python or Cython based loading, or
    # NLTK and SpaCy are useful
    
    # CIFAR-10和CIFAR-100是带有标签的数据集
    
    import torch
    import torchvision
    import torchvision.transforms as transforms
    # torchvision中提供的数据集是[0, 1]间的实数。
    # 我们要把它转化成范围为[-1, 1]的实数。
    
    # 注意!如果在Windows上运行,返回一个BrokenPipeError
    # 的错误,请尝试把torch.utils.data.DataLoader() 的
    # num_worker设置为0
    
    transform = transforms.Compose(
        [
            transforms.ToTensor(),
            # 转化为tensor
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
            # 前面的(0.5, 0.5, 0.5)是RGB通道上的均值
            # 后面(0.5, 0.5, 0.5)是三个通道的标准差
            # image = (图像 - 平均值) / std
            # 通过这个转化会把它变成[-1, 1]上的值
        ]
    )
    
    trainset = torchvision.datasets.CIFAR10(
        root = './data', 
        train = True,     # 训练数据
        download = True,
        transform = transform
    )
    trainloader = torch.utils.data.DataLoader(
        trainset,         # 训练数据来源
        batch_size = 4,   # 每次训练几个数据: default = 1
        shuffle = True,   # 是否随机打乱
        # num_workers = 1   # 使用几个subprocesses
    )
    testset = torchvision.datasets.CIFAR10(
        root = './data', 
        train = False,    # 非训练数据
        download = True,
        transform = transform
    )
    testloader = torch.utils.data.DataLoader(
        testset,
        batch_size = 4,
        shuffle = False,  # 每次不随机打乱
        # num_workers = 1
    )
    classes = ('plane', 'car', 'bird', 'cat', 'deer', 
               'dog', 'frog', 'horse', 'ship', 'truck')
    
    import matplotlib.pyplot as plt
    import numpy as np
    
    # functions to show an image
    
    def imshow(img):
        img = img / 2 + 0.5  # unnormalize
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
        # transpose 是一个轴变换操作, x是0, y是1, z是2
        # 此处:y -> x, z -> y, x -> z
        plt.show()
    
    # get some random training images
    '''
    dataiter = iter(trainloader)
    images, lables = dataiter.next()
    # 用dataiter来遍历所有的数据
    # 由于shuffle为True, 每次都会随机选择。
    
    # show images
    imshow(torchvision.utils.make_grid(images))
    # make_grid: 画图   &网格
    # print lables
    print(' '.join(classes[lables[j]] for j in range(4)))
    # .join: 用' '链接join里面的字符串
    '''
    import torch.nn as nn
    import torch.nn.functional as F
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            # self.conv1 = nn.Conv2d(3, 6, 5)
            self.conv1 = nn.Conv2d(3, 100, 5)
            self.pool = nn.MaxPool2d(2, 2)
            # self.conv2 = nn.Conv2d(6, 16, 5)
            self.conv2 = nn.Conv2d(100, 16, 5)
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
        
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
        
    net = Net()
    
    import torch.optim as optim
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr = 0.001, momentum = 0.9)
    # 网络元素 & 学习率 & 动量因子
    
    path = './cifar_net.pth'
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    net.to(device)
    # 这个操作会递归地把所有模块转变为gpu上的模块
    
    if (input() == "Train"):
        for epoch in range(10):   # loop over the dataset multiple times
    
            running_loss = 0.0
            for i, data in enumerate(trainloader, 0):
                # enumerate (sequence, start = 0)
                # i是当前标号,data是获取到的元素
                inputs, lables = data
                # inputs = inputs
                # lables = lables
                inputs = inputs.to(device)
                lables = lables.to(device)
                # 由于网络本身不是很大,所以对速度提升不太明显
                # zero the parameter gradients first
                optimizer.zero_grad()
                #forward + backward + optimize
                outputs = net(inputs)
                loss = criterion(outputs, lables)
                loss.backward()
                optimizer.step()
    
                # print statistics
                running_loss += loss.item()
                if i % 2000 == 1999:  # print every 2000 mini-batches
                    print('[%d, %5d] loss: %.3f' % 
                        (epoch + 1, i + 1, running_loss / 2000))
                    running_loss = 0.0
        print('Finished Training')
    
        torch.save(net.state_dict(), path)
        # net.state_dict() -> 当前参数状态
    
    dataiter = iter(testloader)
    images, lables = dataiter.next()
    #print images
    imshow(torchvision.utils.make_grid(images))
    print('GroundTruth: ', ' '.join(classes[lables[j]] for j in range(4)))
    
    net = Net()
    net.load_state_dict(torch.load(path))
    # load back in our saved model 
    
    correct = 0
    total = 0
    with torch.no_grad():
        # 在接下来的操作中不自动计算grad
        for data in testloader:
            images, lables = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            # 第一个参数是softmax函数输出的一个tensor
            # 第二个参数: 维度索引0/1, 0是每列max, 1是每行max
            # 返回两个Tensor, 第一个tensor是每行最大值,第二个tensor是最大值索引
            total += lables.size(0)
            correct += (predicted == lables).sum().item()
            # tensor.sum() 返回总和
            # tensor.item() 把Tensor转换为一个数字
    
    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))
    
    class_correct = list(0. for i in range(10))
    class_total = list(0. for i in range(10))
    # list(a, b, c)代表创建一个为[a, b, c]的列表
    # 0. 是一个double型的0
    # for i in range(10)是创建10个这样的0
    with torch.no_grad():
        for data in testloader:
            images, lables = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            c = (predicted == lables).squeeze()
            # squeeze: 把他们的结果压缩成一个Bool列表
            for i in range(4):
                # 数据集大小为4, 所以每次取testloader里面样本都有四个
                lable = lables[i]
                class_correct[lable] += c[i].item()
                # True为1, False为0
                class_total[lable] += 1
    
    for i in range(10):
        print("Accuracy of %s : %2d %%" % (
                classes[i], 100 * class_correct[i] / class_total[i]))
    
    # 附注:让人沮丧的是,简单的加深深度并不能有效地提高识别精度,甚至会导致loss函数不收敛。
    
  • 相关阅读:
    如何成为一名数据科学家
    暑假反思
    暑假计划(7月23日-8月21日)
    ACM数论模板
    Nelder–Mead method
    Introduction to Data Mining
    51_1037最长循环节 (miller rabin算法 pollard rho算法 原根)
    乘法逆元(转)
    51_1228 序列求和(伯努利数)(转)
    清除input中内容的简单方法
  • 原文地址:https://www.cnblogs.com/fengxunling/p/13976930.html
Copyright © 2020-2023  润新知