• 01 Trie 专题


    01 Trie 专题

    异或最大值

    The xor largest pair

    题意: 异或最大值的模板。一个数和一个序列中一个数的异或最大值是多少?要支持询问。

    思路:考虑把序列插入,构建一个 ( ext{Trie}) 树。那么在询问时,只需要讨论该数的位是 (0) 还是 (1) 就行了。这样就需要 (O(nlog w)) 的预处理,(O(log w)) 的询问和修改,为什么是对的。因为异或中我们如果可以满足最高位,那么没有理由不改变最高位,因为 (2^{bit} >sum_{i=0}^{i < bit}2^i) 。那么由高位到地位贪心就可以了。

    /*
    https://ac.nowcoder.com/acm/problem/50993
    */
    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 2e6 + 100;
    int ch[maxn][2];
    
    int sz = 0, rt, n;
    
    int read() {int x; scanf("%d", &x); return x;}
    
    void insert(int u, int t, int x){
        if(t < 0) return;
        int f = ((x >> t) & 1);
        if(!ch[u][f]) ch[u][f] = ++sz;
        insert(ch[u][f], t-1, x);
    }
    
    int ask(int u, int t, int x){
        if(t < 0) return 0;
        int f = ((x >> t) & 1);
        if(ch[u][!f]) return ask(ch[u][!f], t-1, x) + (1 << t);
        
        return ask(ch[u][f], t-1, x);
    }
    
    int main(){
        n = read();
        int ans = 0;
        rt = ++ sz;
        for(int i = 0; i < n; i++){
            int x = read();
            insert(rt, 30, x);
            if(i != 0) ans = max(ans, ask(rt, 30, x));
        }
        printf("%d
    ", ans);
        return 0;
    }
    

    Xor Sum

    Problem Description

    Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包含了N个正整数,随后 Prometheus 将向 Zeus 发起M次询问,每次询问中包含一个正整数 S ,之后 Zeus 需要在集合当中找出一个正整数 K ,使得 K 与 S 的异或结果最大。Prometheus 为了让 Zeus 看到人类的伟大,随即同意 Zeus 可以向人类求助。你能证明人类的智慧么?

    Input

    输入包含若干组测试数据,每组测试数据包含若干行。
    输入的第一行是一个整数(T(T < 10)),表示共有T组数据。
    每组数据的第一行输入两个正整数(N,M(<1=N,M<=100000)),接下来一行,包含N个正整数,代表 Zeus 的获得的集合,之后M行,每行一个正整数S,代表 Prometheus 询问的正整数。所有正整数均不超过(2^{32})

    Output

    对于每组数据,首先需要输出单独一行”Case #?:”,其中问号处应填入当前的数据组数,组数从1开始计算。
    对于每个询问,输出一个正整数K,使得K与S异或值最大。

    Sample Input

    2
    3 2
    3 4 5
    1 5
    4 1
    4 6 5 6
    3
    

    Sample Output

    Case #1:
    4
    3
    Case #2:
    4
    

    同上题,简单板子

    代码
    /*
    http://acm.hdu.edu.cn/showproblem.php?pid=4825
    */
    #include<bits/stdc++.h>
    using namespace std;
    
    int read(){int x; scanf("%d", &x); return x;}
    
    const int maxn = 5e6 + 10;
    int ch[maxn][2], value[maxn];
    int a[maxn];
    int sz = 1, rt = 1;
    int m, n, t, T;
    
    void insert(int u, int t, int x){
        if(t < 0) { value[u] = x; return; }
        int i = (x >> t) & 1;
        if(!ch[u][i]) ch[u][i] = ++sz;
        insert(ch[u][i], t - 1, x);
    }
    
    int query(int u, int t, int x){
        if(t < 0) return value[u];
        int i = (x >> t) & 1;
        if(ch[u][!i]) return query(ch[u][!i], t-1, x);
        return query(ch[u][i], t - 1, x);
    }
    
    void solve(){
        n = read(); m = read();
        memset(ch, 0, sizeof ch);
        sz = rt = 1;
        memset(value, 0, sizeof value);
        for(int i = 1; i <= n; i++) a[i] = read(), insert(rt, 31, a[i]);
    
        printf("Case #%d:
    ", t - 1);
        for (int i = 1; i <= m; i++){
            int s = read();
            printf("%d
    ", query(rt, 31, s));
        }
    }
    
    int main(){
        t = 1; T = read();
        while(t++ <= T) solve();
        return 0;
    }
    

    异或最小值

    Vitya and Strange Lesson

    ((a_1,a_2,a_3..a_n) oplus Aoplus B) 根据结合率,等价于 ((a_1,a_2,a_3..a_n) oplus (Aoplus B))

    因为我们要求的是 (mex) ,那么我们就考虑 (0)(mex-1) 的数是否全部出现过。那么就变为查询异或最小值了,我们在构建 ( ext{01 Trie}) 时要顺便记录 ( ext{Trie}) 中的元素个数,也就是(sz),当一个节点的元素个数填满时,我们是不能考虑的。

    /*
    https://ac.nowcoder.com/acm/problem/112209
    */
    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 6e6 + 10;
    int read(){ int x; scanf("%d", &x); return x;}
    int sz[maxn], ch[maxn][2];
    int size = 1, rt = 1;
    int n, m, last;
    
    void insert(int u, int t, int x){
        if(t < 0){sz[u] = 1; return;}
        int i = (x >> t) & 1;
        if(!ch[u][i]) ch[u][i] = ++size;
        insert(ch[u][i], t - 1, x);
        sz[u] = sz[ch[u][i]] + sz[ch[u][!i]];
    }
    int query(int u, int t, int x){
        if(t < 0 || u == 0) return 0;
        int i = (x >> t) & 1;
        if((1 << t) != sz[ch[u][i]]) return query(ch[u][i], t - 1, x);
        else return query(ch[u][!i], t - 1, x) + (1 << t);
    }
    
    int main(){
        n = read(); m = read(); 
        for(int i = 1; i <= n; i++) insert(rt, 20, read());
        while(m--){
            last ^= read();
            printf("%d
    ", query(rt, 20, last));
        }
        return 0;
    }
    

    保存值的异或最大值

    奶牛异或

    (aoplus a = 0) ,我们可以考虑做一次前缀异或和。那么区间操作就变为单点操作了。

    /*
    https://ac.nowcoder.com/acm/problem/22998
    */
    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 2e7 + 100;
    int ch[maxn][2], id[maxn], a[maxn];
    
    int sz = 0, rt, n;
    int ans1, ans2 = 1, ans3 = 1;
    
    int read() {int x; scanf("%d", &x); return x;}
    
    void insert(int u, int t, int x, int ID){
        if(t < 0){ id[u] = ID; return; }
        int f = ((x >> t) & 1);
        if(!ch[u][f]) ch[u][f] = ++sz;
        insert(ch[u][f], t-1, x, ID);
    }
    
    int ask(int u, int t, int x){
        if(t < 0) return id[u];
        int f = ((x >> t) & 1);
        if(ch[u][!f]) return ask(ch[u][!f], t-1, x);
        
        return ask(ch[u][f], t-1, x);
    }
    
    int main(){
        n = read(); a[0] = 0;
        for(int i = 1; i <= n; i++) (a[i] = a[i-1] ^ read());
        rt = ++ sz;
        for(int i = 1; i <= n; i++){
            insert(rt, 22, a[i-1], i);
            int x = ask(rt, 22, a[i]) - 1;
            if(ans1 < (a[x] ^ a[i])){
                ans1 = (a[x] ^ a[i]);
                ans2 = x + 1;
                ans3 = i;
            }
        }
        printf("%d %d %d
    ", ans1, ans2, ans3);
        return 0;
    }
    

    带删除的异或最小值

    Perfect Security

    我们在( ext{01 Trie}) 上再维护一个(sz_i) 标记,表示是否这个节点下还有没有可用元素。那么删除和插入都只会影响一条链。

    /*
    https://ac.nowcoder.com/acm/problem/112567 
    */
    #include<bits/stdc++.h>
    using namespace std;
    
    int read(){int x; scanf("%d", &x); return x;}
    
    const int maxn = 6e6 + 10;
    int ch[maxn][2], sz[maxn];
    int size = 0, rt = 0;
    int n, m;
    int a[maxn], b[maxn], c[maxn];
    
    void insert(int u, int t, int x){
        if(t < 0) return;
        int i = (x >> t) & 1;
        if(!ch[u][i])  ch[u][i] = ++size;;
        sz[ch[u][i]]++;
        insert(ch[u][i], t - 1, x);
    }
    
    void erase(int u, int t, int x){
        if(t < 0) return;
        int i = (x >> t) & 1;
        sz[ch[u][i]]--;
        erase(ch[u][i], t - 1, x);
    }
    
    int query(int u, int t, int x){
        if(t < 0) return 0;
        int i = (x >> t) & 1;
        if(sz[ch[u][i]]) return query(ch[u][i], t-1, x) + (i << t);
        else return query(ch[u][!i], t-1, x) + ((!i) << t);
    }
    int main(){
        n = read(); 
        for(int i = 1; i <= n; i++) a[i] = read();
        for(int i = 1; i <= n; i++) b[i] = read(), insert(rt, 30, b[i]);
    
        for(int i = 1; i <= n; i++){
            int x = query(rt, 30, a[i]);
            printf("%d
    ", a[i] ^ x);
            erase(rt, 30, x);
        }
        return 0;
    }
    

    带删除的异或最大值

    D. Vasiliy's Multiset

    Author has gone out of the stories about Vasiliy, so here is just a formal task description.

    You are given q queries and a multiset A, initially containing only integer 0. There are three types of queries:

    1. "+ x" — add integer x to multiset A.
    2. "- x" — erase one occurrence of integer x from multiset A. It's guaranteed that at least one x is present in the multiset A before this query.
    3. "? x" — you are given integer x and need to compute the value img, i.e. the maximum value of bitwise exclusive OR (also know as XOR) of integer x and some integer y from the multiset A.

    Multiset is a set, where equal elements are allowed.

    Input

    The first line of the input contains a single integer$q (1 ≤ q≤ 200 000) $— the number of queries Vasiliy has to perform.

    Each of the following q lines of the input contains one of three characters '+', '-' or '?' and an integer (x_i (1 ≤ x_i ≤ 10^9)). It's guaranteed that there is at least one query of the third type.

    Note, that the integer 0 will always be present in the set A.

    Output

    For each query of the type '?' print one integer — the maximum value of bitwise exclusive OR (XOR) of integer x**i and some integer from the multiset A.

    input

    10
    + 8
    + 9
    + 11
    + 6
    + 1
    ? 3
    - 8
    ? 3
    ? 8
    ? 11
    

    output

    11
    10
    14
    13
    

    Note

    After first five operations multiset A contains integers (0, 8, 9, 11, 6 and 1.)

    The answer for the sixth query is integer img — maximum among integers img, img, img, img and img.

    题意

    初始有个一个空集,n个操作,操作分三种

    • +x,将一个 x 加入集合
    • -x,删除集合内的一个 x
    • ?x,询问集合中与 x 异或的最大值
    代码
    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 6e6 + 10;
    int ch[maxn][2], sz[maxn], val[maxn], cnt[maxn];
    int size = 0, rt = 0;
    int n, m;
    
    void insert(int u, int t, int x){
        if(t < 0) { val[u] = x; return;}
        int i = (x >> t) & 1;
        if(!ch[u][i])  ch[u][i] = ++size;
        sz[ch[u][i]]++;
        insert(ch[u][i], t - 1, x);
    }
    
    void erase(int u, int t, int x){
        if(t < 0) return;
        int i = (x >> t) & 1;
        sz[ch[u][i]]--;
        erase(ch[u][i], t - 1, x);
    }
    
    int query(int u, int t, int x){
        if(t < 0) return val[u];
        int i = (x >> t) & 1;
        if(sz[ch[u][!i]]) return query(ch[u][!i], t-1, x);
        else return query(ch[u][i], t-1, x);
    }
    
    int main(){
        cin >> n;
        
        for(int i = 1; i <= n; i++){
            char c; cin >> c;
            int t; cin >> t;
            if(c == '+') insert(rt, 30, t);
            else if(c == '-') erase(rt, 30, t);
            else  printf("%d
    ", max(t, query(rt, 30, t) ^ t));
        }
        return 0;
    }
    /*
    12
    ? 1
    + 1
    + 4
    ? 5
    ? 6
    */
    
  • 相关阅读:
    Linux shell中运行命令后加上字符“&”的作用(转)
    初探Nginx架构
    NeoLoad系列- 快速上手教程
    Web服务器性能压力测试工具
    Web页面性能测试工具浅析
    主流压力测试工具推荐
    Jmeter系列-webdriver代码范例
    Jmeter系列-webdriver插件
    Jmeter系列-自动生成html报告
    loadrunner如何监控windows系统的资源
  • 原文地址:https://www.cnblogs.com/fans-fan/p/14007874.html
Copyright © 2020-2023  润新知