• java线程池源码的理解


    线程池

    新建线程和切换线程的开销太大了,使用线程池可以节省系统资源。

    线程池的关键类:ThreadPoolExecutor。

    该类中包含了大量的多线程与并发处理工具,包括ReentrantLock、AtomicInteger、AQS、CAS、BlockingQueue等

    主要流程

    execute() –> addWorker() –>runWorker() -> getTask()

    重要参数及变量

    • 控制状态的变量 ctl:
      ctl是一个AtomicInteger原子操作类,能够保证线程安全。

    ctl变量定义如下:

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    
    private static int ctlOf(int rs, int wc) { return rs | wc; }
    
    

    详细讲解如下:

    The main pool control state, ctl, is an atomic integer packing
    two conceptual fields
    workerCount, indicating the effective number of threads
    runState,    indicating whether running, shutting down etc
    

    大概意思是:通过对ctl的运算,能够得到两个重要的变量,workerCount(worker线程数量)和runState(线程池运行状态)。

    • 线程池运行状态 runState:

    runState由几个整型常量RUNNING 、SHUTDOWN 、STOP、TIDYING、TERMINATED表示。

    The runState provides the main lifecycle control, taking on values:
    
    RUNNING:  Accept new tasks and process queued tasks
    SHUTDOWN: Don't accept new tasks, but process queued tasks
    STOP:     Don't accept new tasks, don't process queued tasks,
    		  and interrupt in-progress tasks
    TIDYING:  All tasks have terminated, workerCount is zero,
    		  the thread transitioning to state TIDYING
    		  will run the terminated() hook method
    TERMINATED: terminated() has completed
    

    内部类Worker:

    Worker类,继承AQS,并实现了Runnable。

    这个类主要维护线程运行任务的拦截控制状态,用于简化每个Task(任务)执行时获取和释放锁的过程。

    Worker类内部有一个thread线程变量,在Worker类实例化时,thread对象也会随之创建。

    Worker类和Task(任务)有什么区别?

    Task只实现了Runnable接口,而Worker类还继承了AQS,Worker还会协助获取和释放锁。

    worker是线程池中的线程,而Task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,只有Worker(工人)真正开启并执行。

        /**
         * Class Worker mainly maintains interrupt control state for
         * threads running tasks, along with other minor bookkeeping.
         * This class opportunistically extends AbstractQueuedSynchronizer
         * to simplify acquiring and releasing a lock surrounding each
         * task execution.  This protects against interrupts that are
         * intended to wake up a worker thread waiting for a task from
         * instead interrupting a task being run.  We implement a simple
         * non-reentrant mutual exclusion lock rather than use
         * ReentrantLock because we do not want worker tasks to be able to
         * reacquire the lock when they invoke pool control methods like
         * setCorePoolSize.  Additionally, to suppress interrupts until
         * the thread actually starts running tasks, we initialize lock
         * state to a negative value, and clear it upon start (in
         * runWorker).
         */
        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            //非常重要的线程变量
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                //在Worker类实例化时,thread对象也会随之创建。
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    

    execute():

    execute()用于执行任务,参数command为将要执行的任务。

    根据线程池的运行状态,以及线程池中的线程数量,决定执行addWorker(),还是拒绝策略reject()。

    如果线程数小于核心线程数,则创建worker线程任务并执行。

    如果线程数大于核心线程数,只有线程池处于running状态,才会将任务加入到工作队列中。

    如果线程数大于最大线程数,或者线程池处于非running状态,就会执行拒绝策略。

    核心线程数、最大线程数、拒绝策略等相关参数的解析,详情见:https://www.cnblogs.com/expiator/p/9053754.html

        /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
        //execute()的参数command为即要执行的任务
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            //如果工作线程数小于核心线程数,则创建worker线程任务并执行
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            //在阻塞队列 BlockingQueue 中 add() 和 offer()都是用来向队列添加一个元素。
            //在容量已满的情况下,add() 方法会抛出IllegalStateException异常,offer() 方法只会返回 false 。
            //如果工作线程数大于核心线程数,只有线程池处于running状态,才会将任务加入到工作队列中。
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    addWorker():

    addWorker()方法的布尔参数core,取决了workerCount(也就是worker数量)的边界范围。

    该方法实例化Worker对象worker,worker内部的线程变量thread获取可重入锁ReentrantLock。

    通过ReentrantLock加锁,保证线程安全。

    接着会将新建的worker对象添加到HashSet集合workers里面,操作完毕就释放锁。

    最后开启线程,会自动执行worker对象内部的run()方法,run()方法内部会执行runWorker()。

        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread.start()), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    //方法的布尔参数core,取决了workerCount(也就是worker数量)的边界范围
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //通过CAS机制,进行加1操作。具体内容见下文。   
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                //实例化Worker对象,Worker对象内部的线程变量thread获取可重入锁ReentrantLock,操作完毕就释放锁,保证线程安全。
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            //将worker对象添加到HashSet<Worker>对象workers里面。这个HashSet集合workers的size(),其实就是线程池的大小。    
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        //开启线程,会自动执行Worker对象内部的run()方法,run()方法内部会执行runWorker()。
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    
    • AtomicInteger和CAS:

    在多线程中操作基本类型变量,为了保证线程安全,使用AtomicInteger是一个非常好的选择。

    ctl是一个AtomicInteger对象。AtomiInteger对象,可以通过CAS机制,对变量进行操作,如自增等。

    CAS就是CompareAndSwap,比较和替换。当变量的值为期望值时,将其修改为对应的更新值。

    关于AtomicInteger和CAS,详情参考:https://www.cnblogs.com/expiator/p/9449298.html

    上面的addWorker()中调用的compareAndIncrementWorkerCount()方法如下:

    /**
     * Attempts to CAS-increment the workerCount field of ctl.
     */
    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }
    	
    	
    /**
    * Atomically sets the value to the given updated value
    * if the current value {@code ==} the expected value.
    *
    * @param expect the expected value
    * @param update the new value
    * @return {@code true} if successful. False return indicates that
    * the actual value was not equal to the expected value.
    */
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
    

    runWorker()

    通过task.run();执行任务。

       /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and then we
         * ensure that unless pool is stopping, this thread does not have
         * its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to afterExecute.
         * We separately handle RuntimeException, Error (both of which the
         * specs guarantee that we trap) and arbitrary Throwables.
         * Because we cannot rethrow Throwables within Runnable.run, we
         * wrap them within Errors on the way out (to the thread's
         * UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                //获取任务
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                        //执行任务
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    
    

    getTask()

    从工作队列workQueue中取出任务task。

    workQueue是一个BlockingQueue(阻塞队列),使用take()和poll()函数都可以从队列中取数。

    区别是:如果队列中没有数据时,使用take()则线程await()等待。而poll()则不会等待,直接返回null。

        /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait, and if the queue is
         *    non-empty, this worker is not the last thread in the pool.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
    
                // Are workers subject to culling?
                //是否需要计时处理,如果设置了allowCoreThreadTimeOut或当前工作线程数量大于corePoolSize 则需要计时处理
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                    //workQueue是一个BlockingQueue(阻塞队列),使用take()和poll()函数都可以从队列中取数。
                    //区别是:如果队列中没有数据时,使用take()则线程await()等待。而poll()则不会等待,直接返回null。
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    线程池size

    前文提到,在addWorker()中,会将新建的worker对象添加到HashSet集合workers里面。

    而线程池中的线程数量,就是指workers这个Set集合的size。

        /**
         * Returns the current number of threads in the pool.
         *
         * @return the number of threads
         */
        public int getPoolSize() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Remove rare and surprising possibility of
                // isTerminated() && getPoolSize() > 0
                return runStateAtLeast(ctl.get(), TIDYING) ? 0
                    : workers.size();
            } finally {
                mainLock.unlock();
            }
        }
    

    参考资料

    《码出高效》
    https://www.cnblogs.com/sxkgeek/p/9343519.html
    https://blog.csdn.net/programmer_at/article/details/79799267

  • 相关阅读:
    【luogu2756】 飞行员配对方案问题 [二分图匹配 匈牙利算法]
    [APIO2008]紧急集合
    2019.8.27 Za
    【luogu2763】试题库问题 [网络流 最大流]
    [CQOI2014]危桥 [网络流 最大流]
    【luogu1231】教辅的组成 [网络流 最大流]
    【网络流】
    【2019.8.24】
    【匈牙利算法】
    2019.8.23 Za [数论]
  • 原文地址:https://www.cnblogs.com/expiator/p/11992906.html
Copyright © 2020-2023  润新知