• 黑盒测试用例设计方法


    1. 等价类划分法

    等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类。

    • 有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合.利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能。
    • 无效等价类:与有效等价类的定义恰巧相反。

    设计测试用例时,要同时考虑这两种等价类.因为,软件不仅要能接收合理的数据,也要能经受意外的考验.这样的测试才能确保软件具有更高的可靠性。

    2. 边界值分析法

    边界值分析法就是对输入或输出的边界值进行测试的一种黑盒测试方法。通常边界值分析法是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界

    使用边界值分析方法设计测试用例,首先应确定边界情况。通常输入和输出等价类的边界,就是应着重测试的边界情况。应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据。

    1.     边界值分析法与等价类分析法的区别:

    1)    边界值分析不是从某等价类中随便挑一个作为代表,而是使这个等价类的每个边界都要作为测试条件。

    2)    边界值分析不仅考虑输入条件,还要考虑输出空间产生的测试情况。

    3. 错误推断法

    基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法。

    基本思想:列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据他们选择测试用例。

    例如, 输入数据和输出数据为0的情况;输入表格为空格或输入表格只有一行。 这些都是容易发生错误的情况。可选择这些情况下的例子作为测试用例。

    4. 因果图法

    因果图法是一种利用图解法分析输入的各种组合情况,从而设计测试用例的方法,它适合于检查程序输入条件的各种组合情况。

    等价类划分法和边界值分析方法都是着重考虑输入条件,但没有考虑输入条件的各种组合、输入条件之间的相互制约关系。这样虽然各种输入条件可能出错的情况已经测试到了,但多个输入条件组合起来可能出错的情况却被忽视了。

    如果在测试时必须考虑输入条件的各种组合,则可能的组合数目将是天文数字,因此必须考虑采用一种适合于描述多种条件的组合、相应产生多个动作的形式来进行测试用例的设计,这就需要利用因果图(逻辑模型)。

    1.     因果图介绍

    1)    4种符号分别表示了规格说明中向4种因果关系。

     

    2)    因果图中使用了简单的逻辑符号,以直线联接左右结点。左结点表示输入状态(或称原因),右结点表示输出状态(或称结果)。

    3)    C1表示原因,通常置于图的左部;e1表示结果,通常在图的右部。C1和e1均可取值0或1,0表示某状态不出现,1表示某状态出现。

    2.     因果图涉及的概念

    1)    关系

    • 恒等:若c1是1,则e1也是1;否则e1为0。
    • 非:若c1是1,则e1是0;否则e1是1。
    • 或:若c1或c2或c3是1,则e1是1;否则e1为0。“或”可有任意个输入。
    • 与:若c1和c2都是1,则e1为1;否则e1为0。“与”也可有任意个输入。

    2)    约束

    输入状态相互之间还可能存在某些依赖关系,称为约束。例如, 某些输入条件本身不可能同时出现。输出状态之间也往往存在约束。在因果图中,用特定的符号标明这些约束。

     

    • 输入条件的约束有以下4类:
      • E约束(异):a和b中至多有一个可能为1,即a和b不能同时为1。
      • I约束(或):a、b和c中至少有一个必须是1,即 a、b 和c不能同时为0。
      • O约束(唯一);a和b必须有一个,且仅有1个为1。
      • R约束(要求):a是1时,b必须是1,即不可能a是1时b是0。
    • 输出条件约束类型

                   输出条件的约束只有M约束(强制):若结果a是1,则结果b强制为0。

    3.     采用因果图法设计测试用例的步骤:

    1)    分析软件规格说明描述中, 那些是原因(即输入条件或输入条件的等价类),那些是结果(即输出条件), 并给每个原因和结果赋予一个标识符。

    2)    分析软件规格说明描述中的语义,找出原因与结果之间, 原因与原因之间对应的关系,根据这些关系,画出因果图。

    3)    由于语法或环境限制, 有些原因与原因之间,原因与结果之间的组合情况不可能出现,为表明这些特殊情况, 在因果图上用一些记号表明约束或限制条件。

    4)    把因果图转换为判定表。

    5)    把判定表的每一列拿出来作为依据,设计测试用例。

    5. 判定表驱动法

    判定表是分析和表达多逻辑条件下执行不同操作的情况的工具

    1.     判定表的优点

    能够将复杂的问题按照各种可能的情况全部列举出来,简明并避免遗漏。因此,利用判定表能够设计出完整的测试用例集合。

    在一些数据处理问题当中,某些操作的实施依赖于多个逻辑条件的组合,即:针对不同逻辑条件的组合值,分别执行不同的操作。判定表很适合于处理这类问题。

    2.     “阅读指南”判定表                    

     

    1

    2

    3

    4

    5

    6

    7

    8

    问题

    觉得疲倦?

    Y

    Y

    Y

    Y

    N

    N

    N

    N

    感兴趣吗?

    Y

    Y

    N

    N

    Y

    Y

    N

    N

    糊涂吗?

    Y

    N

    Y

    N

    Y

    N

    Y

    N

    建议

    重读

           

         

    继续

             

       

    跳下一章

               

    休息

           

    3.     判定表通常由四个部分组成如下图所示。

     

    1)    条件桩(Condition Stub):列出了问题得所有条件。通常认为列出的条件的次序无关紧要。

    2)    动作桩(Action Stub):列出了问题规定可能采取的操作。这些操作的排列顺序没有约束。

    3)    条件项(Condition Entry):列出针对它左列条件的取值。在所有可能情况下的真假值。

    4)    动作项(Action Entry):列出在条件项的各种取值情况下应该采取的动作。

    4.     规则及规则合并

    1)    规则:任何一个条件组合的特定取值及其相应要执行的操作称为规则。在判定表中贯穿条件项和动作项的一列就是一条规则。显然,判定表中列出多少组条件取值,也就有多少条规则,既条件项和动作项有多少列。

    2)    化简:就是规则合并有两条或多条规则具有相同的动作,并且其条件项之间存在着极为相似的关系。

    5.     规则及规则合并举例

    1)    如下图左端,两规则动作项一样,条件项类似,在1、2条件项分别取Y、N时,无论条件3取何值,都执行同一操作。即要执行的动作与条件3无关。于是可合并。“-”表示与取值无关。

     

     

    2)    与上类似,下图中,无关条件项“-”可包含其他条件项取值,具有相同动作的规则可合并。

     

     

     

     

    3)    化简后的读书指南判定表

     

    1

    2

    3

    4

    问题

    你觉得疲倦吗?

    -

    -

    Y

    N

    你对内容感兴趣吗?

    Y

    Y

    N

    N

    书中内容使你胡涂吗?

    Y

    N

    -

    -

     

    建议

    请回到本章开头重读

    x

         

    继续读下去

     

    X

       

    跳到下一章去读

         

    x

    停止阅读,请休息

       

    x

     

    6.     判定表的建立步骤:(根据软件规格说明)

    1)    确定规则的个数.假如有n个条件。每个条件有两个取值(0,1),故有2n种规则。

    2)    列出所有的条件桩和动作桩。

    3)    填入条件项。

    4)    填入动作项。等到初始判定表。

    5)    简化.合并相似规则(相同动作)。

     

    7. 正交试验法

     

    7.1.              概念

    依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的,有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法.类似的方法有:聚类分析方法,因子方法方法等.

    7.2.              正交试验法

    利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到。往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。

    利用正交实验设计测试用例的步骤:

    1.     提取功能说明,构造因子--状态表

    把影响实验指标的条件称为因子.而影响实验因子的条件叫因子的状态.利用正交实验设计方法来设计测试用例时,首先要根据被测试软件的规格说明书找出影响其功能实现的操作对象和外部因素,把他们当作因子,而把各个因子的取值当作状态.对软件需求规格说明中的功能要求进行划分,把整体的概要性的功能要求进行层层分解与展开,分解成具体的有相对独立性的基本的功能要求.这样就可以把被测试软件中所有的因子都确定下来,并为确定个因子的权值提供参考的依据.确定因子与状态是设计测试用例的关键.因此要求尽可能全面的正确的确定取值,以确保测试用例的设计作到完整与有效。

    2.     加权筛选,生成因素分析表

    对因子与状态的选择可按其重要程度分别加权.可根据各个因子及状态的作用大小,出现频率的大小以及测试的需要,确定权值的大小。

    3.     利用正交表构造测试数据集

    正交表的推导依据Galois理论(这里省略,需要时可查数理统计方面的教材)。

    利用正交实验设计方法设计测试用例,比使用等价类划分,边界值分析,因果图等方法有以下优点:节省测试工作工时;可控制生成的测试用例数量;测试用例具有一定的覆盖率。

    8. 功能图法

     

    8.1.              概念

    功能图由状态迁移图和布尔函数组成.状态迁移图用状态和迁移来描述.一个状态指出数据输入的位置(或时间),而迁移则指明状态的改变.同时要依靠判定表或因果图表示的逻辑功能.例,一个简化的自动出纳机ATM的功能图。

    8.2.              功能图法的应用

    1. 功能图介绍

    一个程序的功能说明通常由动态说明和静态说明组成.动态说明描述了输入数据的次序或转移的次序.

    静态说明描述了输入条件与输出条件之间的对应关系.对于较复杂的程序,由于存在大量的组合情况,因此,仅用静态说明组成的规格说明对于测试来说往往是不够的.必须用动态说明来补充功能说明.功能图方法是用功能图FD形式化地表示程序的功能说明,并机械地生成功能图的测试用例.

    功能图模型由状态迁移图和逻辑功能模型构成.状态迁移图用于表示输入数据序列以及相应的输出数据.在状态迁移图中,由输入数据和当前状态决定输出数据和后续状态.逻辑功能模型用于表示在状态中输入条件和输出条件之间的对应关系.逻辑功能模型只适合于描述静态说明,输出数据仅由输入数据决定.测试用例则是由测试中经过的一系列状态和在每个状态中必须依靠输入/输出数据满足的一对条件组成.功能图方法其实是是一种黑盒白盒混合用例设计方法。

    (功能图方法中,要用到逻辑覆盖和路径测试的概念和方法,其属白盒测试方法中 的内容.逻辑覆盖是以程序内部的逻辑结构为基础的测试用例设计方法.该方法要求测试人员对程序的逻辑结构有清楚的了解.由于覆盖测试的目标不同,逻辑覆盖可分为:语句覆盖,判定覆盖,判定-条件覆盖,条件组合覆盖及路径覆盖.下面我们指的逻辑覆盖和路径是功能或系统水平上的,以区别与白盒测试中的程序内部的.)

    1. 测试用例生成方法

    从功能图生成测试用例,得到的测试用例数是可接受的. 问题的关键的是如何从状态迁移图中选取测试用例. 若用节点代替状态,用弧线代替迁移,则状态迁移图就可转化成一个程序的控制流程图形式.问题就转化为程序的路径测试问题(如白盒测试)问题了.

    1. 测试用例生成规则

    为了把状态迁移(测试路径)的测试用例与逻辑模型(局部测试用例)的测试用例组合起来,从功能图生成实用的测试用例,须定义下面的规则.在一个结构化的状态迁移(SST)中,定义三种形式的循环:顺序,选择和重复.但分辨一个状态迁移中的所有循环是有困难的.(其表示图形省略)。

    1. 从功能图生成测试用例的过程

    1)    生成局部测试用例:在每个状态中,从因果图生成局部测试用例.局部测试用例由原因值(输入数据)组合与对应的结果值(输出数据或状态)构成。

    2)    测试路径生成:利用上面的规则(三种)生成从初始状态到最后状态的测试路径。

    3)    测试用例合成:合成测试路径与功能图中每个状态中的局部测试用例.结果是初始状态到最后状态的一个状态序列,以及每个状态中输入数据与对应输出数据的组合。

    1. 测试用例的合成算法:采用条件构造树.

    9. 场景法

     

    9.1.              概念

    现在的软件几乎都是用事件触发来控制流程的,事件触发时的情景便形成了场景,而同一事件不同的触发顺序和处理结果就形成事件流。这种在软件设计方面的思想也可以引入到软件测试中,可以比较生动地描绘出事件触发时的情景,有利于测试设计者设计测试用例,同时使测试用例更容易理解和执行。

    9.2.              场景法的应用

    基本流和备选流:如下图所示,图中经过用例的每条路径都用基本流和备选流来表示,直黑线表示基本流,是经过用例的最简单的路径。备选流用不同的色彩表示,一个备选流可能从基本流开始,在某个特定条件下执行,然后重新加入基本流中(如备选流1和3);也可能起源于另一个备选流(如备选流2),或者终止用例而不再重新加入到某个流(如备选流2和4)。

  • 相关阅读:
    RabbitMQ管理
    vc6.0
    SystemTap
    undefined reference to `__imp_socket'
    采集小板校时
    点播播放不出来
    抓包注意事项
    下载rfc
    CLion快捷键
    rtsp vlc请求实例
  • 原文地址:https://www.cnblogs.com/ellie-test/p/4350400.html
Copyright © 2020-2023  润新知