• AtCoder Beginner Contest 146


    A - Can't Wait for Holiday

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    string s;
    int main() {
        cin >> s;
        if (s == "SAT") cout << 1 << endl;
        if (s == "FRI") cout << 2 << endl;
        if (s == "THU") cout << 3 << endl;
        if (s == "WED") cout << 4 << endl;
        if (s == "TUE") cout << 5 << endl;
        if (s == "MON") cout << 6 << endl;
        if (s == "SUN") cout << 7 << endl;
        return 0;
    }
    

    B - ROT N

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    int n;
    string s;
    int main() {
        cin >> n >> s;
        for (int i = 0; i < s.size(); i++) {
            cout << char((s[i] - 'A' + n) % 26 + 'A');
        }
        cout << endl;
        return 0;
    }
    

    C - Buy an Integer

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    LL A, B, X;
    int main() {
        cin >> A >> B >> X;
        int len = -1;
    
        for (int i = 1; i <= 20; i++) {
            if (A * (LL)pow(10, i - 1) + B * (LL)i > X) {
                len = i - 1;
                break;
            }
        }
        if (len == 0)
            cout << 0 << endl;
        else if (len >= 10 || len == -1) {
            cout << 1000000000 << endl;
        } else {
            X -= B * len;
            if (X / A > 1e9)
                cout << 1000000000 << endl;
            else
                cout << min(X / A, (LL)pow(10, len ) - 1) << endl;
        }
        return 0;
    }
    

    D - Coloring Edges on Tree

    给出一个n个节点的树,问需要多少颜色才能使得每个点连的边都是不同的颜色,并给出一种涂色方案

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    int n, cnt;
    struct node {
        int u, v;
        int color;
    } E[N];
    vector<pair<int,int>> mp[N];
    void dfs(int now, int fa, int color) {
        int last = 0;
        for (int i = 0; i < mp[now].size(); i++) {
            int ne = mp[now][i].first;
            int id = mp[now][i].second;
            if (ne == fa) continue;
            int flag = 1;
            for (int j = last+1; j <= cnt; j++) {
                if (j == color) continue;
                E[id].color = j;
                flag = 0;
                break;
            }
            if (flag) {
                cnt++;
                E[id].color = cnt;
            }
            last = E[id].color;
            dfs(ne, now, E[id].color);
        }
    }
    
    int main() {
        cin >> n;
        for (int i = 0; i < n-1; i++) {
            scanf("%d%d", &E[i].u, &E[i].v);
            mp[E[i].u].push_back({E[i].v,i});
            mp[E[i].v].push_back({E[i].u,i});
        }
        dfs(1, 0, 0);
        printf("%d
    ", cnt);
        for (int i = 0; i < n-1; i++) {
            printf("%d
    ", E[i].color);
        }
        return 0;
    }
    

    E - Rem of Sum is Num

    给出一个数组,找出符合以下条件的子区间的个数:

    这个子区间的和 % k ==(这个区间的数字个数)。

    类似的题目都要想到处理前缀和,然后对前缀和取模

    但是又不能枚举,考虑对式子进行转化:

    图片.png

    式子来自:https://blog.csdn.net/qq_43408238/article/details/103484868

    所以转化为寻找如上式子的子区间个数,但是要注意取模不可能超过k,所以需要利用类似滑动窗口的东西,限制个数

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    LL f[N];
    map<LL, LL> mp;
    int main() {
        int n, m;
        cin >> n >> m;
        for (int i = 1; i <= n; ++i) {
            scanf("%lld", &f[i]);
            f[i] += f[i - 1];
        }
        for (int i = 1; i <= n; ++i) {
            f[i] = (f[i] - i) % m;
        }
        m--;
        m = min(m, n);
        for (int i = 0; i < m; i++) {
            mp[f[i]]++;
        }
        LL sum = 0;
        for (int i = m; i <= n; ++i) {
            mp[f[i]]++;
            sum += mp[f[i - m]] - 1;
            mp[f[i - m]]--;
        }
        for (int i = n - m + 1; i <= n; ++i) {
            sum += mp[f[i]] - 1;
            mp[f[i]]--;
        }
        cout << sum;
    
        return 0;
    }
    

    F - Sugoroku

    单调队列优化DP

    给出一个长度为n+1的01字符串,0可以走,1不能走,现在从0号点走到n号点,每次可以跳最多m步,问最少跳几次可以到达n点,输出每次跳的步数

    dp求解,类似lis的更新方法:

    dp[i]=min(dp[j]+1,dp[i])
    

    但是n为1e5,无法采用n2的算法,所以可以利用单调队列维护长度为m的区间内的dp值的最小值,然后直接转化即可

    至于输出路径,利用pre数组维护即可

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int N = 1e6 + 5;
    typedef long long LL;
    int n, m;
    int dp[N], q[N],pre[N];
    string s;
    int main() {
        cin >> n >> m;
        cin >> s;
        int hh = 0, tt = 0;
        for (int i = 0; i <= m; i++) {
            if (s[i] == '0') dp[i] = 1, pre[i] = 0;
            else dp[i] = 0x3f3f3f3f;
            if (hh <= tt && i - m + 1 > q[hh]) hh++;
            while (hh <= tt && dp[q[tt]] > dp[i]) tt--;
            q[++tt] = i;
        }
         hh++;
        for (int i = m+1; i <= n; i++) {
            dp[i] = 0x3f3f3f3f;
            if (s[i] == '0') dp[i] = min(dp[q[hh]] + 1,dp[i]),pre[i]=q[hh];
            else dp[i] = 0x3f3f3f3f;
            if (hh <= tt && i - m + 1 > q[hh]) hh++;
            while (hh <= tt && dp[q[tt]] > dp[i]) tt--;
            q[++tt] = i;
        }
        stack<int> st;
        //for (int i = 0; i <= n; i++) cout << pre[i] << ' ';
        //cout << endl;
        if (dp[n] != 0x3f3f3f3f) {
            int now = n;
            while (now!=0) {
                st.push(now - pre[now]);
                now = pre[now];
            }
            while (!st.empty()) {
                cout << st.top() << ' ';
                st.pop();
            }
            cout << endl;
            } else
                cout << -1 << endl;
        return 0;
    }
    
  • 相关阅读:
    yum -y list java* 查看当前java的版本
    max number of threads [1024] for user [lish] likely too low, increase to at least [2048]
    max file descriptors [4096] for elasticsearch process likely too low, increase to at least [65536]
    max virtual memory areas vm.max_map_count [65530] likely too low, increase to at least [262144]
    linux文件描述符open file descriptors与open files的区别
    samba 报错
    检测端口是否开启
    sqlserver2008出现数据库主体在该数据库中拥有架构,无法删除的解决方案
    sqlserver生成表结构文档的方法
    胡萝卜周博客 软件下载
  • 原文地址:https://www.cnblogs.com/dyhaohaoxuexi/p/14408123.html
Copyright © 2020-2023  润新知