问题描述
在某图形操作系统中,有 N 个窗口,每个窗口都是一个两边与坐标轴分别平行的矩形区域。窗口的边界上的点也属于该窗口。窗口之间有层次的区别,在多于一个窗口重叠的区域里,只会显示位于顶层的窗口里的内容。
当你点击屏幕上一个点的时候,你就选择了处于被点击位置的最顶层窗口,并且这个窗口就会被移到所有窗口的最顶层,而剩余的窗口的层次顺序不变。如果你点击的位置不属于任何窗口,则系统会忽略你这次点击。
现在我们希望你写一个程序模拟点击窗口的过程。
当你点击屏幕上一个点的时候,你就选择了处于被点击位置的最顶层窗口,并且这个窗口就会被移到所有窗口的最顶层,而剩余的窗口的层次顺序不变。如果你点击的位置不属于任何窗口,则系统会忽略你这次点击。
现在我们希望你写一个程序模拟点击窗口的过程。
输入格式
输入的第一行有两个正整数,即 N 和 M。(1 ≤ N ≤ 10,1 ≤ M ≤ 10)
接下来 N 行按照从最下层到最顶层的顺序给出 N 个窗口的位置。 每行包含四个非负整数 x1, y1, x2, y2,表示该窗口的一对顶点坐标分别为 (x1, y1) 和 (x2, y2)。保证 x1 < x2,y1 2。
接下来 M 行每行包含两个非负整数 x, y,表示一次鼠标点击的坐标。
题目中涉及到的所有点和矩形的顶点的 x, y 坐标分别不超过 2559 和 1439。
接下来 N 行按照从最下层到最顶层的顺序给出 N 个窗口的位置。 每行包含四个非负整数 x1, y1, x2, y2,表示该窗口的一对顶点坐标分别为 (x1, y1) 和 (x2, y2)。保证 x1 < x2,y1 2。
接下来 M 行每行包含两个非负整数 x, y,表示一次鼠标点击的坐标。
题目中涉及到的所有点和矩形的顶点的 x, y 坐标分别不超过 2559 和 1439。
输出格式
输出包括 M 行,每一行表示一次鼠标点击的结果。如果该次鼠标点击选择了一个窗口,则输出这个窗口的编号(窗口按照输入中的顺序从 1 编号到 N);如果没有,则输出"IGNORED"(不含双引号)。
样例输入
3 4
0 0 4 4
1 1 5 5
2 2 6 6
1 1
0 0
4 4
0 5
0 0 4 4
1 1 5 5
2 2 6 6
1 1
0 0
4 4
0 5
样例输出
2
1
1
IGNORED
1
1
IGNORED
样例说明
第一次点击的位置同时属于第 1 和第 2 个窗口,但是由于第 2 个窗口在上面,它被选择并且被置于顶层。
第二次点击的位置只属于第 1 个窗口,因此该次点击选择了此窗口并将其置于顶层。现在的三个窗口的层次关系与初始状态恰好相反了。
第三次点击的位置同时属于三个窗口的范围,但是由于现在第 1 个窗口处于顶层,它被选择。
最后点击的 (0, 5) 不属于任何窗口。
第二次点击的位置只属于第 1 个窗口,因此该次点击选择了此窗口并将其置于顶层。现在的三个窗口的层次关系与初始状态恰好相反了。
第三次点击的位置同时属于三个窗口的范围,但是由于现在第 1 个窗口处于顶层,它被选择。
最后点击的 (0, 5) 不属于任何窗口。
析:用结构体记录id和坐标,然后用vector来存储,然后每次找到哪个窗口后,先把这个删除,然后再放到最顶层。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <list> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct node{ int x1, y1, x2, y2; int id; }; vector<node> v; int main(){ while(cin >> n >> m){ node u; v.clear(); for(int i = 0; i < n; ++i){ cin >> u.x1 >> u.y1 >> u.x2 >> u.y2; u.id = i+1; v.push_back(u); } int x, y; while(m--){ cin >> x >> y; bool ok = false; vector<node> :: iterator it = v.end(); --it; while(true){ if(x >= it->x1 && x <= it->x2 && y >= it->y1 && y <= it->y2){ printf("%d ", it->id); ok = true; node u = *it; v.erase(it); v.push_back(u); break; } if(it == v.begin()) break; --it; } if(!ok) puts("IGNORED"); } } return 0; }