• 特征根法小记


    特征根法小记

    对于(k)阶循环数列(a_{n+k}=c_1*a_{n+k-1}+c_2*a_{n+k-2}+...+c_k*a_{n})的通项求解。

    首先,对于(k)次特征方程:(x{^k}=c_{1}*x^{k-1}+c_2*x^{k-2}+...+c_k),我们可以得到(k)个不同的解。

    对于特征方程的(k)个解,我们记为(x_1,x_2....,x_k),称其为数列({a_n})的特征根。

    对于有无重根进行分类:

    对于无重根的情况

    我们可以得到(a_n=A_1*{x_1}^n+A_2*{x_2}^n+.....A_k*{x_k}^n​)

    其中数列(A_n)可以由数列初始值消元得到。

    对于有重根的情况

    假设方程有(s)个不同的根(x_i),其中第(i)个根(x_i)(t_i)个重根,即(sum_{i=1}^{s}t_i=k)

    可以得到(a_n=F(1,n)*{x_1}^n+F(2,n)*{x_2}^n+....+F(s,n)*{x_s}^n).

    其中(F(i,n)=A_{1,i}+A_{2,i}*n+....A_{t_i,i}*n^{t_i-1}),而(A_{n,m})数列可以由初值消元得到。

    对于(k)元的证明需要用到线性代数的知识(矩阵那一块的),就先咕了。。。。

  • 相关阅读:
    二叉搜索树
    【树】List Leaves
    模板——dijkstra单源最短路
    余数求和——除法分块
    倍增——ST表
    线段树——内存池
    线段树——模板
    洛谷 P1498 南蛮图腾
    洛谷 P2199 最后的迷宫
    洛谷 P1495 中国剩余定理
  • 原文地址:https://www.cnblogs.com/dsjkafdsaf/p/12778780.html
Copyright © 2020-2023  润新知