• Neural Networks and Deep Learning(week4)Deep Neural Network


    Deep Neural Network for Image Classification: Application

    预先实现的代码,保存在本地 dnn_app_utils_v3.py

    import numpy as np
    import matplotlib.pyplot as plt
    import h5py
    
    
    def sigmoid(Z):
        """
        Implements the sigmoid activation in numpy
    
        Arguments:
        Z -- numpy array of any shape
    
        Returns:
        A -- output of sigmoid(z), same shape as Z
        cache -- returns Z as well, useful during backpropagation
        """
    
        A = 1/(1+np.exp(-Z))
        cache = Z
    
        return A, cache
    
    def relu(Z):
        """
        Implement the RELU function.
    
        Arguments:
        Z -- Output of the linear layer, of any shape
    
        Returns:
        A -- Post-activation parameter, of the same shape as Z
        cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
        """
    
        A = np.maximum(0,Z)
    
        assert(A.shape == Z.shape)
    
        cache = Z 
        return A, cache
    
    
    def relu_backward(dA, cache):
        """
        Implement the backward propagation for a single RELU unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object.
    
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    def sigmoid_backward(dA, cache):
        """
        Implement the backward propagation for a single SIGMOID unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
    
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    
    def load_data():
        train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
        train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
        train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    
        test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
        test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
        test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    
        classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
        train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
        test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
        return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
    
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
    
        Returns:
        parameters -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
    
        np.random.seed(1)
    
        W1 = np.random.randn(n_h, n_x)*0.01
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h)*0.01
        b2 = np.zeros((n_y, 1))
    
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters     
    
    
    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
    
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
    
        np.random.seed(1)
        parameters = {}
        L = len(layer_dims)            # number of layers in the network
    
        for l in range(1, L):
            parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #*0.01
            parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
    
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
    
        return parameters
    
    def linear_forward(A, W, b):
        """
        Implement the linear part of a layer's forward propagation.
    
        Arguments:
        A -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
    
        Returns:
        Z -- the input of the activation function, also called pre-activation parameter 
        cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
        """
    
        Z = W.dot(A) + b
    
        assert(Z.shape == (W.shape[0], A.shape[1]))
        cache = (A, W, b)
    
        return Z, cache
    
    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
    
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = sigmoid(Z)
    
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
    
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)
    
        return A, cache
    
    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
    
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
    
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                    the cache of linear_sigmoid_forward() (there is one, indexed L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network
    
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):
            A_prev = A 
            A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu")
            caches.append(cache)
    
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
        caches.append(cache)
    
        assert(AL.shape == (1,X.shape[1]))
    
        return AL, caches
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
    
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        cost = (1./m) * (-np.dot(Y,np.log(AL).T) - np.dot(1-Y, np.log(1-AL).T))
    
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
    
        return cost
    
    def linear_backward(dZ, cache):
        """
        Implement the linear portion of backward propagation for a single layer (layer l)
    
        Arguments:
        dZ -- Gradient of the cost with respect to the linear output (of current layer l)
        cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        A_prev, W, b = cache
        m = A_prev.shape[1]
    
        dW = 1./m * np.dot(dZ,A_prev.T)
        db = 1./m * np.sum(dZ, axis = 1, keepdims = True)
        dA_prev = np.dot(W.T,dZ)
    
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (db.shape == b.shape)
    
        return dA_prev, dW, db
    
    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
    
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
    
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
        return dA_prev, dW, db
    
    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (there are (L-1) or them, indexes from 0 to L-2)
                    the cache of linear_activation_forward() with "sigmoid" (there is one, index L-1)
    
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
        # Initializing the backpropagation
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
        current_cache = caches[L-1]
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
    
        for l in reversed(range(L-1)):
            # lth layer: (RELU -> LINEAR) gradients.
            current_cache = caches[l]
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu")
            grads["dA" + str(l)] = dA_prev_temp
            grads["dW" + str(l + 1)] = dW_temp
            grads["db" + str(l + 1)] = db_temp
    
        return grads
    
    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
    
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
    
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
    
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        for l in range(L):
            parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
            parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]
    
        return parameters
    
    def predict(X, y, parameters):
        """
        This function is used to predict the results of a  L-layer neural network.
    
        Arguments:
        X -- data set of examples you would like to label
        parameters -- parameters of the trained model
    
        Returns:
        p -- predictions for the given dataset X
        """
    
        m = X.shape[1]
        n = len(parameters) // 2 # number of layers in the neural network
        p = np.zeros((1,m))
    
        # Forward propagation
        probas, caches = L_model_forward(X, parameters)
    
    
        # convert probas to 0/1 predictions
        for i in range(0, probas.shape[1]):
            if probas[0,i] > 0.5:
                p[0,i] = 1
            else:
                p[0,i] = 0
    
        #print results
        #print ("predictions: " + str(p))
        #print ("true labels: " + str(y))
        print("Accuracy: "  + str(np.sum((p == y)/m)))
    
        return p
    
    def print_mislabeled_images(classes, X, y, p):
        """
        Plots images where predictions and truth were different.
        X -- dataset
        y -- true labels
        p -- predictions
        """
        a = p + y
        mislabeled_indices = np.asarray(np.where(a == 1))
        plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots
        num_images = len(mislabeled_indices[0])
        for i in range(num_images):
            index = mislabeled_indices[1][i]
    
            plt.subplot(2, num_images, i + 1)
            plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest')
            plt.axis('off')
            plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " 
     Class: " + classes[y[0,index]].decode("utf-8"))

    1 - 导入包

    import time
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import scipy
    from PIL import Image
    from scipy import ndimage
    import skimage
    from dnn_app_utils_v3 import *
    
    %matplotlib inline
    plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    %load_ext autoreload
    %autoreload 2
    
    np.random.seed(1)

    2 - 导入数据集(Cat vs non-Cat)

    Problem Statement: You are given a dataset ("data.h5") containing:

    • m_train个图像训练集(cat-1, non-cat-0
    • m_test个图像测试集(cat , non-cat)
    • 每个图像的shape:(num_px, num_px, 3)(RGB)
    train_x_orig, train_y, test_x_orig, test_y, classes = load_data()

    下面的代码将显示数据集中的图像:

    # Example of a picture
    index = 19
    plt.imshow(train_x_orig[index])
    print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") +  " picture.")
    y = 1. It's a cat picture.
    # Explore your dataset 
    m_train = train_x_orig.shape[0]
    num_px = train_x_orig.shape[1]
    m_test = test_x_orig.shape[0]
    
    print ("Number of training examples: " + str(m_train))
    print ("Number of testing examples: " + str(m_test))
    print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
    print ("train_x_orig shape: " + str(train_x_orig.shape))
    print ("train_y shape: " + str(train_y.shape))
    print ("test_x_orig shape: " + str(test_x_orig.shape))
    print ("test_y shape: " + str(test_y.shape))
    Number of training examples: 209
    Number of testing examples: 50
    Each image is of size: (64, 64, 3)
    train_x_orig shape: (209, 64, 64, 3)
    train_y shape: (1, 209)
    test_x_orig shape: (50, 64, 64, 3)
    test_y shape: (1, 50)

    2.2 reshape和标准化数据

    # Reshape the training and test examples 
    train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T   # The "-1" makes reshape flatten the remaining dimensions
    test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
    
    # Standardize data to have feature values between 0 and 1.
    train_x = train_x_flatten/255.
    test_x = test_x_flatten/255.
    
    print ("train_x's shape: " + str(train_x.shape))
    print ("test_x's shape: " + str(test_x.shape))
    train_x's shape: (12288, 209)
    test_x's shape: (12288, 50)

    12,288 个 64×64×3 (重塑图像向量的 size)

    3 - 模型的结构

    你将构建两种不同的模型:一个2层神经网络和一个L层深层神经网络;然后比较两种模型的性能,并为 L 测试不同值 

    3.1 - 2-layer neural network

    The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.

     

    3.2 - L-layer deep neural network

     

    The model can be summarized as: [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID

     

    3.3 - 常规方法(构建深度学习)

    1. Initialize parameters / Define hyperparameters (初始化参数/定义超参数)

    2. Loop for num_iterations:(迭代 num_iterations 次)
          a. Forward propagation     (前向传播)
           b. Compute cost function  (计算代价函数)
           c. Backward propagation   (后向传播)
           d. Update parameters (using parameters, and grads from backprop) (更新参数--使用后向传播得到的参数和梯度)

    4. Use trained parameters to predict labels (使用训练好的参数预测标签)
     

    4 - 两层神经网络

    Question: 使用下面函数实现该结构: LINEAR -> RELU -> LINEAR -> SIGMOID

    def initialize_parameters(n_x, n_h, n_y):
        ...
        return parameters 
    def linear_activation_forward(A_prev, W, b, activation):
        ...
        return A, cache
    def compute_cost(AL, Y):
        ...
        return cost
    def linear_activation_backward(dA, cache, activation):
        ...
        return dA_prev, dW, db
    def update_parameters(parameters, grads, learning_rate):
        ...
        return parameters
    ### CONSTANTS DEFINING THE MODEL ####
    n_x = 12288     # num_px * num_px * 3
    n_h = 7
    n_y = 1
    layers_dims = (n_x, n_h, n_y)
    # GRADED FUNCTION: two_layer_model
    
    def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
        """
        Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
        
        Arguments:
        X -- input data, of shape (n_x, number of examples)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- dimensions of the layers (n_x, n_h, n_y)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- If set to True, this will print the cost every 100 iterations 
        
        Returns:
        parameters -- a dictionary containing W1, W2, b1, and b2
        """
        
        np.random.seed(1)
        grads = {}
        costs = []                              # to keep track of the cost
        m = X.shape[1]                           # number of examples
        (n_x, n_h, n_y) = layers_dims
        
        # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
        ### START CODE HERE ### (≈ 1 line of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        ### END CODE HERE ###
        
        # Get W1, b1, W2 and b2 from the dictionary parameters.
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
    
            # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
            ### START CODE HERE ### (≈ 2 lines of code)
            A1, cache1 = linear_activation_forward(X, W1, b1, activation='relu')
            A2, cache2 = linear_activation_forward(A1, W2, b2, activation='sigmoid')
            ### END CODE HERE ###
            
            # Compute cost
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(A2, Y)
            ### END CODE HERE ###
            
            # Initializing backward propagation
            dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
            
            # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
            ### START CODE HERE ### (≈ 2 lines of code)
            dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation='sigmoid')
            dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation='relu')
            ### END CODE HERE ###
            
            # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
            grads['dW1'] = dW1
            grads['db1'] = db1
            grads['dW2'] = dW2
            grads['db2'] = db2
            
            # Update parameters.
            ### START CODE HERE ### (approx. 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate=learning_rate)
            ### END CODE HERE ###
    
            # Retrieve W1, b1, W2, b2 from parameters
            W1 = parameters["W1"]
            b1 = parameters["b1"]
            W2 = parameters["W2"]
            b2 = parameters["b2"]
            
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
            if print_cost and i % 100 == 0:
                costs.append(cost)
           
        # plot the cost
    
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
        return parameters
    parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
    Cost after iteration 0: 0.693049735659989
    Cost after iteration 100: 0.6464320953428849
    Cost after iteration 200: 0.6325140647912678
    Cost after iteration 300: 0.6015024920354665
    Cost after iteration 400: 0.5601966311605748
    Cost after iteration 500: 0.5158304772764729
    Cost after iteration 600: 0.4754901313943325
    Cost after iteration 700: 0.43391631512257495
    Cost after iteration 800: 0.40079775362038844
    Cost after iteration 900: 0.3580705011323798
    Cost after iteration 1000: 0.3394281538366413
    Cost after iteration 1100: 0.30527536361962654
    Cost after iteration 1200: 0.27491377282130164
    Cost after iteration 1300: 0.2468176821061486
    Cost after iteration 1400: 0.19850735037466108
    Cost after iteration 1500: 0.17448318112556666
    Cost after iteration 1600: 0.17080762978097128
    Cost after iteration 1700: 0.11306524562164708
    Cost after iteration 1800: 0.09629426845937153
    Cost after iteration 1900: 0.08342617959726871
    Cost after iteration 2000: 0.07439078704319085
    Cost after iteration 2100: 0.06630748132267934
    Cost after iteration 2200: 0.059193295010381744
    Cost after iteration 2300: 0.053361403485605585
    Cost after iteration 2400: 0.048554785628770226
    predictions_train = predict(train_x, train_y, parameters)

    Expected Output:

    Accuracy 1.0
    predictions_test = predict(test_x, test_y, parameters)

    Expected Output:

    Accuracy 0.72


    5 - L层神经网络

    Question: 使用下面函数实现该结构: [LINEAR -> RELU]×(L-1) -> LINEAR -> SIGMOID

    def initialize_parameters_deep(layer_dims):
        ...
        return parameters 
    def L_model_forward(X, parameters):
        ...
        return AL, caches
    def compute_cost(AL, Y):
        ...
        return cost
    def L_model_backward(AL, Y, caches):
        ...
        return grads
    def update_parameters(parameters, grads, learning_rate):
        ...
        return parameters
    ### CONSTANTS ###
    layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
    # GRADED FUNCTION: L_layer_model
    
    def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
        """
        Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
        
        Arguments:
        X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
        learning_rate -- learning rate of the gradient descent update rule
        num_iterations -- number of iterations of the optimization loop
        print_cost -- if True, it prints the cost every 100 steps
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
    
        np.random.seed(1)
        costs = []                         # keep track of cost
        
        # Parameters initialization.
        ### START CODE HERE ###
        parameters = initialize_parameters_deep(layers_dims)
        ### END CODE HERE ###
        
        # Loop (gradient descent)
        for i in range(0, num_iterations):
    
            # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
            ### START CODE HERE ### (≈ 1 line of code)
            AL, caches = L_model_forward(X, parameters)
            ### END CODE HERE ###
            
            # Compute cost.
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(AL, Y)
            ### END CODE HERE ###
        
            # Backward propagation.
            ### START CODE HERE ### (≈ 1 line of code)
            grads = L_model_backward(AL, Y, caches)
            ### END CODE HERE ###
     
            # Update parameters.
            ### START CODE HERE ### (≈ 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate=learning_rate)
            ### END CODE HERE ###
                    
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
            if print_cost and i % 100 == 0:
                costs.append(cost)
                
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
        return parameters
    parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
    Cost after iteration 0: 0.771749
    Cost after iteration 100: 0.672053
    Cost after iteration 200: 0.648263
    Cost after iteration 300: 0.611507
    Cost after iteration 400: 0.567047
    Cost after iteration 500: 0.540138
    Cost after iteration 600: 0.527930
    Cost after iteration 700: 0.465477
    Cost after iteration 800: 0.369126
    Cost after iteration 900: 0.391747
    Cost after iteration 1000: 0.315187
    Cost after iteration 1100: 0.272700
    Cost after iteration 1200: 0.237419
    Cost after iteration 1300: 0.199601
    Cost after iteration 1400: 0.189263
    Cost after iteration 1500: 0.161189
    Cost after iteration 1600: 0.148214
    Cost after iteration 1700: 0.137775
    Cost after iteration 1800: 0.129740
    Cost after iteration 1900: 0.121225
    Cost after iteration 2000: 0.113821
    Cost after iteration 2100: 0.107839
    Cost after iteration 2200: 0.102855
    Cost after iteration 2300: 0.100897
    Cost after iteration 2400: 0.092878
    pred_train = predict(train_x, train_y, parameters)
    Train Accuracy 0.985645933014
    pred_test = predict(test_x, test_y, parameters)

    Expected Output:

    Test Accuracy 0.8

    在相同的测试集上,你的5层神经网络的性能(80%)比2层神经网络(72%)要好

    6 - 结果分析

    print_mislabeled_images(classes, test_x, test_y, pred_test)

    有几种类型的图像模型往往做的不好,包括:

    • 猫的身体在一个不寻常位置出现
    • 猫的背景与背景相似
    • 不寻常的猫色和各种相机角度亮度的图像尺度变化(猫很大或很小的图像)

    7 - 测试你的图片

    ## START CODE HERE ##
    my_image = "my_image2.jpg" # change this to the name of your image file 
    my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
    ## END CODE HERE ##
    
    fname = "images/" + my_image
    image = np.array(plt.imread(fname))
    my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
    my_predicted_image = predict(my_image, my_label_y, parameters)
    
    plt.imshow(image)
    print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a "" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "" picture.")
    Accuracy: 1.0
    y = 1.0, your L-layer model predicts a "cat" picture.

  • 相关阅读:
    蓝桥杯--算法训练 未名湖边的烦恼 (递归)
    hdoj--5606--tree(并查集)
    山东理工oj--1912--IP地址(水题)
    zzulioj--1634--Happy Thanksgiving Day
    45.java异常处理之抛出异常处理
    43.Java异常概要
    42.Java内部类
    41.Java特征之一多态
    40.Java接口
    39.Java值交换
  • 原文地址:https://www.cnblogs.com/douzujun/p/10344361.html
Copyright © 2020-2023  润新知