Intervals
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3559 Accepted Submission(s): 1303
Problem Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,
> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,
> writes the answer to the standard output
Write a program that:
> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,
> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,
> writes the answer to the standard output
Input
The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces
and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.
Process to the end of file.
Process to the end of file.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Author
1384
Recommend
题意:给出n个区间的左右端点,和这个区间内至少存在的在集合s中的点的个数,让你求集合s中最少有多少个点
题解:重在找到差分约束的约束条件,将约束条件转化为xj-xi<=k的形式,然后建立一条从i到j权值为k的边;
设maxl为区间的左端点,maxr为区间的右端点,S[i] 表示集合Z里面的元素在区间[0, i ]的个数,Maxl,Maxr分别表示所有区间里面的最左端和最右端,dist[]数组存储源点到某点的最短路。则由题意得限制条件
一 S[right] - S[left-1] >= least 即[left, right]区间个数不小于least,转换得S[left-1] - S[right] <= least;
二 0 <= S[i] - S[i-1] <= 1转换得 S[i-1] - S[i] <= 0 && S[i] - S[i-1] <= 1。
第二个条件题中并没有给出,需要自己推导,因为仅仅靠题中的条件无法构建一个连通图,也就无法求最短路,因为s[i]表示的是集合Z里面的元素在区间[0, i ]的个数所以s[i]至多比s[i-1]大一也可能相等
然后根据限制条件建图
转化问题:题目需要求的是S[Maxr] - S[Maxl-1] >= ans 即S[Maxl-1] - S[Maxr] <= -ans。 若以Maxr为源点 ,而-ans就为Maxr到Maxl-1的最短路径的相反数,即-dist[Maxl-1]。
#include<stdio.h> #include<string.h> #include<queue> #include<iostream> #include<algorithm> using namespace std; #define INF 0x3f3f3f int head[100100],vis[1000100],n,cnt; int dis[100100]; int l,r; struct node { int u,v,val; int next; }edge[1001000]; void init() { cnt=0; memset(head,-1,sizeof(head)); l=INF; r=-1; } void add(int u,int v,int val) { node E={u,v,val,head[u]}; edge[cnt]=E; head[u]=cnt++; } void getmap() { int a,b,c; for(int i=0;i<n;i++) { cin>>a>>b>>c; l=min(a,l); r=max(r,b); add(b,a-1,-c); } for(int i=l;i<=r;i++) { add(i,i-1,0); add(i-1,i,1); } } void SPFA() { for(int i=l-1;i<=r;i++) dis[i]=i==r?0:INF; memset(vis,0,sizeof(vis)); queue<int>q; q.push(r); vis[r]=1; while(!q.empty()) { int u=q.front(); q.pop(); vis[u]=0; for(int i=head[u];i!=-1;i=edge[i].next) { node E=edge[i]; if(dis[E.v]>dis[E.u]+edge[i].val) { dis[E.v]=dis[E.u]+edge[i].val; if(!vis[E.v]) { vis[E.v]=1; q.push(E.v); } } } } cout<<-dis[l-1]<<endl; } int main() { while(scanf("%d",&n)!=EOF) { init(); getmap(); SPFA(); } return 0; }