Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 10300 | Accepted: 3458 |
Description
Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads.
Each cow i has a specified height hi (1 ≤ hi ≤ 1,000,000,000) and is standing in a line of cows all facing east (to the right in our diagrams). Therefore, cow i can see the tops of the heads of cows in front of her (namely cows i+1, i+2, and so on), for as long as these cows are strictly shorter than cow i.
Consider this example:
=
= =
= - = Cows facing right -->
= = =
= - = = =
= = = = = =
1 2 3 4 5 6
Cow#1 can see the hairstyle of cows #2, 3, 4
Cow#2 can see no cow's hairstyle
Cow#3 can see the hairstyle of cow #4
Cow#4 can see no cow's hairstyle
Cow#5 can see the hairstyle of cow 6
Cow#6 can see no cows at all!
Let ci denote the number of cows whose hairstyle is visible from cow i; please compute the sum of c1 through cN.For this example, the desired is answer 3 + 0 + 1 + 0 + 1 + 0 = 5.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i.
Output
Sample Input
6 10 3 7 4 12 2
Sample Output
5
1 /* 2 功能Function Description: POJ-3250 单调栈 3 开发环境Environment: DEV C++ 4.9.9.1 4 技术特点Technique: 5 版本Version: 6 作者Author: 可笑痴狂 7 日期Date: 20120802 8 备注Notes: 9 题意: 10 n个牛排成一列向右看,牛i能看到牛j的头顶,当且仅当牛j在牛i的右边并且牛i与牛j之间的所有牛均比牛i矮。 11 设牛i能看到的牛数为Ci,求∑Ci 12 13 本题正确解法是用栈来做的-----刚开始看的时候表示根本想不到栈 14 15 单调栈-----所谓单调栈也就是每次加入一个新元素时,把栈中小于等于这个值的元素弹出。 16 接下来回到这道题。求所有牛总共能看到多少牛,可以转化为:这n头牛共能被多少头牛看见。 17 当我们新加入一个高度值时,如果栈中存在元素小于新加入的高度值,那么这些小的牛肯定看不见这个高度的牛(那就看不见这头牛后边的所有牛), 18 所以就可以把这些元素弹出。每次加入新元素,并执行完弹出操作后,栈中元素个数便是可以看见这个牛的“牛数”~~~。 19 20 这道题要注意答案可能会超longint,要用int64。 21 */ 22 23 /*代码一:(超时) 24 #include<stdio.h> 25 26 int main() 27 { 28 int n,i,j,num; 29 int h[80001]; 30 __int64 sum; 31 while(~scanf("%d",&n)) 32 { 33 sum=0; 34 for(i=0;i<n;++i) 35 scanf("%d",&h[i]); 36 for(i=0;i<n-1;++i) 37 { 38 j=i+1; 39 num=0; 40 while(j<n&&h[i]>h[j++]) 41 ++num; 42 sum+=num; 43 } 44 printf("%lld\n",sum); 45 } 46 return 0; 47 } 48 */ 49 50 //代码二:(单调栈) 51 52 #include<cstdio> 53 #include<stack> 54 using namespace std; 55 56 int main() 57 { 58 stack<int> s; 59 __int64 sum; 60 int n,h,t; 61 while(~scanf("%d",&n)) 62 { 63 sum=0; 64 scanf("%d",&h); 65 s.push(h); 66 for(int i=1;i<n;++i) 67 { 68 scanf("%d",&t); 69 while(!s.empty()&&t>=s.top()) 70 s.pop(); 71 sum+=s.size(); 72 s.push(t); //将当前元素压入栈 73 } 74 printf("%lld\n",sum); 75 while(!s.empty()) //每次用后将栈清空 76 s.pop(); 77 } 78 return 0; 79 }