• POJ3250 Bad Hair Day 单调栈


    Bad Hair Day
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 10300   Accepted: 3458

    Description

    Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads.

    Each cow i has a specified height hi (1 ≤ hi ≤ 1,000,000,000) and is standing in a line of cows all facing east (to the right in our diagrams). Therefore, cow i can see the tops of the heads of cows in front of her (namely cows i+1, i+2, and so on), for as long as these cows are strictly shorter than cow i.

    Consider this example:

            =
    =       =
    =   -   =         Cows facing right -->
    =   =   =
    = - = = =
    = = = = = =
    1 2 3 4 5 6

    Cow#1 can see the hairstyle of cows #2, 3, 4
    Cow#2 can see no cow's hairstyle
    Cow#3 can see the hairstyle of cow #4
    Cow#4 can see no cow's hairstyle
    Cow#5 can see the hairstyle of cow 6
    Cow#6 can see no cows at all!

    Let ci denote the number of cows whose hairstyle is visible from cow i; please compute the sum of c1 through cN.For this example, the desired is answer 3 + 0 + 1 + 0 + 1 + 0 = 5.

    Input

    Line 1: The number of cows, N.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i.

    Output

    Line 1: A single integer that is the sum of c1 through cN.

    Sample Input

    6
    10
    3
    7
    4
    12
    2

    Sample Output

    5
     1 /* 
     2    功能Function Description:     POJ-3250  单调栈
     3    开发环境Environment:          DEV C++ 4.9.9.1
     4    技术特点Technique:
     5    版本Version:
     6    作者Author:                   可笑痴狂
     7    日期Date:                      20120802
     8    备注Notes:
     9        题意:
    10            n个牛排成一列向右看,牛i能看到牛j的头顶,当且仅当牛j在牛i的右边并且牛i与牛j之间的所有牛均比牛i矮。
    11            设牛i能看到的牛数为Ci,求∑Ci
    12 
    13        本题正确解法是用栈来做的-----刚开始看的时候表示根本想不到栈
    14 
    15        单调栈-----所谓单调栈也就是每次加入一个新元素时,把栈中小于等于这个值的元素弹出。
    16        接下来回到这道题。求所有牛总共能看到多少牛,可以转化为:这n头牛共能被多少头牛看见。
    17        当我们新加入一个高度值时,如果栈中存在元素小于新加入的高度值,那么这些小的牛肯定看不见这个高度的牛(那就看不见这头牛后边的所有牛),
    18        所以就可以把这些元素弹出。每次加入新元素,并执行完弹出操作后,栈中元素个数便是可以看见这个牛的“牛数”~~~。
    19 
    20        这道题要注意答案可能会超longint,要用int64。
    21 */
    22 
    23 /*代码一:(超时)
    24 #include<stdio.h>
    25 
    26 int main()
    27 {
    28     int n,i,j,num;
    29     int h[80001];
    30     __int64 sum;
    31     while(~scanf("%d",&n))
    32     {
    33         sum=0;
    34         for(i=0;i<n;++i)
    35             scanf("%d",&h[i]);
    36         for(i=0;i<n-1;++i)
    37         {
    38             j=i+1;
    39             num=0;
    40             while(j<n&&h[i]>h[j++])
    41                 ++num;
    42             sum+=num;
    43         }
    44         printf("%lld\n",sum);
    45     }
    46     return 0;
    47 }
    48 */
    49 
    50 //代码二:(单调栈)
    51 
    52 #include<cstdio>
    53 #include<stack>
    54 using namespace std;
    55 
    56 int main()
    57 {
    58     stack<int> s;
    59     __int64 sum;
    60     int n,h,t;
    61     while(~scanf("%d",&n))
    62     {
    63         sum=0;
    64         scanf("%d",&h);
    65         s.push(h);
    66         for(int i=1;i<n;++i)
    67         {
    68             scanf("%d",&t);
    69             while(!s.empty()&&t>=s.top())
    70                 s.pop();
    71             sum+=s.size();
    72             s.push(t);          //将当前元素压入栈
    73         }
    74         printf("%lld\n",sum);
    75         while(!s.empty())       //每次用后将栈清空
    76             s.pop();
    77     }
    78     return 0;
    79 }
    功不成,身已退
  • 相关阅读:
    如何在。net中扩展本机消息框对话框
    一个显示角色映射的对话框
    键盘消息/加速器处理MFC对话框的应用程序
    立即显示WinForms使用如图所示()事件
    XFontDialog——定制CFontDialog第一部分:添加字体过滤器
    一个动画风格的对话框类
    类似vista的任务对话框
    简单而强大的可调整大小的对话框
    /etc/hosts
    /etc/sysconfig/network-scripts/ifcfg-ensxx
  • 原文地址:https://www.cnblogs.com/dongsheng/p/2619638.html
Copyright © 2020-2023  润新知