原文地址:
https://www.cnblogs.com/steven-yang/p/5686473.html
-----------------------------------------------------------------------------------------------------------------
前言
最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能。
这个思路称之为Adaboost算法,是对其它算法组合的一种方式。
我们可以看出弱算法是同类的算法,也就是说,它们是基于相同的算法,只不过参数不同。这样元算法在训练算法的步骤中就好容易控制。
注:也有其它的的元算法,可以针对不同算法的。
基本概念
- 元算法(meta-algorithm),是对其它算法组合的一种方式。也称为集成方法(ensemble method)。
- 弱算法:准确度较低的算法。元算法通过组合多个弱算法来提高准确率。
- 强算法:可以认为是组合后的算法。
- boosting : 是一种元算法,将多个弱算法变成强算法的算法族。除了AdsBoost,还有LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others.
- Adaboost : Adaptive Boosting的简称。一个具体的boosting算法。本章就是介绍这个算法。
详解Adaboost
说明:书中弱算法是一个单层决策树算法,返回的是一个二类分类结果(-1, 1)。所以书中Adaboost也是一个二类分类算法。
Adaboost训练算法
- 输入
- 样本数据
- 弱算法的数量
- 输出
- 一个弱算法数组(弱算法参数,弱算法权重)
- 逻辑
在一个迭代中(弱算法数量)
计算当前算法的参数
计算当前算法的错误率
计算当前算法的权重
计算下次样本数据的权重
计算当前的样本数据错误数,如果是0,退出。
解释:
假如有1000个sample,有100个sample被分错类,则:
可以看出错误的sample占的比例越小,下次的权重是二次方级数增大。
Adaboost分类算法
- 输入
- 分类数据
- 弱算法数组
- 输出
- 分类结果
- 逻辑
在一个迭代中(弱算法数量) 用当前弱算法计算分类结果$classified_i$ 计算强分类结果(使用下面的公式) 返回分类结果
AdaBoost分类器中计算公式
参考
- Machine Learning in Action by Peter Harrington
- Boosting (machine learning)
-------------------------------------------------------------------------------------