• 求矩形的最大面积


    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    Hint

    Huge input, scanf is recommended.
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <stack>
     6 using namespace std;
     7 #define maxn 111111
     8 typedef long long LL;
     9 int a[maxn],L[maxn],R[maxn];
    10 stack<int>S;
    11 int main()
    12 {
    13     int n;
    14     while(scanf("%d",&n)&&n)
    15     {
    16         while(!S.empty()) S.pop();
    17         for(int i=1; i<=n; i++) scanf("%d",&a[i]);
    18         for(int i=1; i<=n; i++)
    19         {
    20             while(!S.empty()&&a[S.top()]>=a[i]) S.pop();
    21             if(!S.empty()) L[i]=S.top();
    22             else L[i]=0;
    23             S.push(i);
    24         }
    25         while(!S.empty()) S.pop();
    26         for(int i=n; i>=1; i--)
    27         {
    28             while(!S.empty()&&a[S.top()]>=a[i]) S.pop();
    29             if(!S.empty()) R[i]=S.top();
    30             else R[i]=n+1;
    31             S.push(i);
    32         }
    33         LL ans=0;
    34         for(int i=1; i<=n; i++) ans=max(ans,(LL)(R[i]-L[i]-1)*a[i]);
    35         printf("%I64d
    ",ans);
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    Spring3:AOP
    Spring2:bean的使用
    Spring1:Spring简介、环境搭建、源码下载及导入MyEclipse
    Vue.js——60分钟组件快速入门(上篇)
    vue父子组件嵌套的时候遇到
    Vue.js——60分钟快速入门
    [Vue warn]: Cannot find element: #app
    关于RabbitMQ以及RabbitMQ和Spring的整合
    spring集成多个rabbitMQ
    RabbitMQ-从基础到实战(5)— 消息的交换(下)
  • 原文地址:https://www.cnblogs.com/demodemo/p/4678377.html
Copyright © 2020-2023  润新知