• C. Ehab and Path-etic MEXs


    output
    standard output

    You are given a tree consisting of nn nodes. You want to write some labels on the tree's edges such that the following conditions hold:

    • Every label is an integer between 00 and n2n−2 inclusive.
    • All the written labels are distinct.
    • The largest value among MEX(u,v)MEX(u,v) over all pairs of nodes (u,v)(u,v) is as small as possible.

    Here, MEX(u,v)MEX(u,v) denotes the smallest non-negative integer that isn't written on any edge on the unique simple path from node uu to node vv.

    Input

    The first line contains the integer nn (2n1052≤n≤105) — the number of nodes in the tree.

    Each of the next n1n−1 lines contains two space-separated integers uu and vv (1u,vn1≤u,v≤n) that mean there's an edge between nodes uu and vv. It's guaranteed that the given graph is a tree.

    Output

    Output n1n−1 integers. The ithith of them will be the number written on the ithith edge (in the input order).

    Examples
    input
    Copy
    3
    1 2
    1 3
    
    output
    Copy
    0
    1
    
    input
    Copy
    6
    1 2
    1 3
    2 4
    2 5
    5 6
    
    output
    Copy
    0
    3
    2
    4
    1
    Note

    The tree from the second sample:

    #include <bits/stdc++.h>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const int mod = 998244353;
    const int N = 1e5+5;
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m%n);
    }
    ll lcm(ll m, ll n)
    {
        return m*n / gcd(m, n);
    }
    
    int main()
    {
        ll n;
        cin >> n;
        vector<vector<int>> a(n + 1);
        vector<int> u(n+1),v(n+1);
        for (int i = 1; i<n ; i++) {
            cin >> u[i] >> v[i];
            a[u[i]].push_back(v[i]);
            a[v[i]].push_back(u[i]);
        }
        if (n == 2)
        {
            cout << 0 << endl;
            return 0;
        }
        int k=-1;
        rep(i,1,n)
        {
            if(a[i].size()>=3)
            {
                k=i;
                break;
            }
        }
        if(k==-1)
        {
            rep(i,0,n-2)
                cout<<i<<endl;
            return 0;
        }
        int tot=3;
        rep(i,1,n-1)
        {
            if(u[i]==k)
            {
                if(a[k][0]==v[i])
                    cout<<0<<endl;
                else if(a[k][1]==v[i])
                    cout<<1<<endl;
                else if(a[k][2]==v[i])
                    cout<<2<<endl;
                else
                    cout<<tot++<<endl;
            }
            else if(v[i]==k)
            {
                if(a[k][0]==u[i])
                    cout<<0<<endl;
                else if(a[k][1]==u[i])
                    cout<<1<<endl;
                else if(a[k][2]==u[i])
                    cout<<2<<endl;
                else
                    cout<<tot++<<endl;
            }
            else
                cout<<tot++<<endl;
        }
        return 0;
    }
  • 相关阅读:
    深入浅出MFC——MFC六大关键技术仿真(二)
    错误:Invalid action class configuration that references an unknown class named [XXX]的解决
    错误:java.lang.NoClassDefFoundError: com/project/common/exception/ServiceException 的解决
    SQL查询语句优化的实用方法
    ueditor表格边框没有颜色的解决
    ueditor显示内容末尾有多余标记的解决
    form表单中enctype属性作用
    springMVC中@RequestParam和@RequestBody注解的用法
    错误:This function has none of DETERMINISTIC... 的解决
    如何区分内存类型及查看内存的兼容性
  • 原文地址:https://www.cnblogs.com/dealer/p/12922766.html
Copyright © 2020-2023  润新知