• 树hash


    判断树的同构,采用树hash的方式。

    树hash定义在有根树上。判断无根树同构的时候,可以比较重心为根的hash值或者比较每个点为根的hash值。

    h[x]表示x为根的子树的hash,g[x]表示x为根时全树的hash。

    我采用的方法是

    h[x] = 1 + ∑h[y] * p[siz[y]]

    于是g[x] = g[fa] - h[x] * p[siz[x]] + h[x]

    例题1: BJOI2015 树的同构

    判断无根树同构,我是比较了每个点为根时的hash值。

      1 #include <bits/stdc++.h>
      2 
      3 typedef long long LL;
      4 const int N = 60, MO = 998244353;
      5 
      6 struct Edge {
      7     int nex, v;
      8 }edge[N << 1]; int tp;
      9 
     10 int e[N], n, m, turn, fr[N], p[1000010], top, siz[N], h[N], g[N];
     11 std::vector<int> v[N];
     12 bool vis[1000010];
     13 
     14 inline void add(int x, int y) {
     15     tp++;
     16     edge[tp].v = y;
     17     edge[tp].nex = e[x];
     18     e[x] = tp;
     19     return;
     20 }
     21 
     22 inline bool equal(int a, int b) {
     23     int len = v[a].size();
     24     if(len != v[b].size()) return false;
     25     for(int i = 0; i < len; i++) {
     26         if(v[a][i] != v[b][i]) return false;
     27     }
     28     return true;
     29 }
     30 
     31 inline void getp(int n) {
     32     for(int i = 2; i <= n; i++) {
     33         if(!vis[i]) {
     34             p[++top] = i;
     35         }
     36         for(int j = 1; j <= top && i * p[j] <= n; j++) {
     37             vis[i * p[j]] = 1;
     38             if(i % p[j] == 0) {
     39                 break;
     40             }
     41         }
     42     }
     43     return;
     44 }
     45 
     46 void DFS_1(int x, int f) {
     47     siz[x] = 1;
     48     h[x] = 1;
     49     for(int i = e[x]; i; i = edge[i].nex) {
     50         int y = edge[i].v;
     51         if(y == f) continue;
     52         DFS_1(y, x);
     53         h[x] = (h[x] + 1ll * h[y] * p[siz[y]] % MO) % MO;
     54         siz[x] += siz[y];
     55     }
     56     return;
     57 }
     58 
     59 void DFS_2(int x, int f, int V) {
     60     g[x] = (h[x] + 1ll * V * p[n - siz[x]] % MO) % MO;
     61     v[turn].push_back(g[x]);
     62     V = (1ll * V * p[n - siz[x]] % MO + 1) % MO;
     63     for(int i = e[x]; i; i = edge[i].nex) {
     64         int y = edge[i].v;
     65         if(y == f) {
     66             continue;
     67         }
     68         DFS_2(y, x, ((LL)V + h[x] - 1 - 1ll * h[y] * p[siz[y]] % MO + MO) % MO);
     69     }
     70     return;
     71 }
     72 
     73 int main() {
     74     getp(1000009);
     75     scanf("%d", &m);
     76     for(turn = 1; turn <= m; turn++) {
     77         scanf("%d", &n);
     78         tp = 0;
     79         memset(e + 1, 0, n * sizeof(int));
     80         for(int i = 1, x; i <= n; i++) {
     81             scanf("%d", &x);
     82             if(x) {
     83                 add(x, i);
     84                 add(i, x);
     85             }
     86         }
     87         DFS_1(1, 0);
     88         DFS_2(1, 0, 0);
     89         std::sort(v[turn].begin(), v[turn].end());
     90         /*for(int i = 0; i < n; i++) {
     91             printf("%d ", v[turn][i]);
     92         }
     93         puts("
    ");*/
     94     }
     95 
     96     for(int i = 1; i <= m; i++) {
     97         fr[i] = i;
     98     }
     99     for(int i = 2; i <= m; i++) {
    100         for(int j = 1; j < i; j++) {
    101             if(equal(i, j)) {
    102                 fr[i] = fr[j];
    103                 break;
    104             }
    105         }
    106     }
    107     for(int i = 1; i <= m; i++) {
    108         printf("%d
    ", fr[i]);
    109     }
    110     return 0;
    111 }
    AC代码

    例题2: JSOI2016 独特的树叶

    对第一棵树的所有点为根的hash值建立set,然后枚举第二棵树,在set中查。

      1 #include <bits/stdc++.h>
      2 
      3 const int N = 100010, MO = 998244353;
      4 
      5 struct Edge {
      6     int nex, v;
      7 };
      8 
      9 std::set<int> st;
     10 int p[2000010], top, in[N], near[N];
     11 bool vis[2000010];
     12 
     13 inline int qpow(int a, int b) {
     14     int ans = 1;
     15     while(b) {
     16         if(b & 1) ans = 1ll * ans * a % MO;
     17         a = 1ll * a * a % MO;
     18         b = b >> 1;
     19     }
     20     return ans;
     21 }
     22 
     23 struct Tree {
     24     Edge edge[N << 1]; int tp;
     25     int e[N], h[N], g[N], siz[N], n;
     26     inline void init(int t) {
     27         n = t;
     28         tp = 0;
     29         memset(e + 1, 0, n * sizeof(int));
     30         return;
     31     }
     32     inline void add(int x, int y) {
     33         edge[++tp].v = y;
     34         edge[tp].nex = e[x];
     35         e[x] = tp;
     36         return;
     37     }
     38     void DFS_1(int x, int f) {
     39         siz[x] = 1;
     40         h[x] = 1;
     41         for(int i = e[x]; i; i = edge[i].nex) {
     42             int y = edge[i].v;
     43             if(y == f) {
     44                 continue;
     45             }
     46             DFS_1(y, x);
     47             siz[x] += siz[y];
     48             h[x] = (h[x] + 1ll * h[y] * p[siz[y]] % MO) % MO;
     49         }
     50         //printf("x = %d h[x] = %d 
    ", x, h[x]);
     51         return;
     52     }
     53     void DFS_2(int x, int f, int V) {
     54         g[x] = (h[x] + 1ll * V * p[n - siz[x]] % MO) % MO;
     55         //printf("x = %d v = %d g = %d 
    ", x, V, g[x]);
     56         for(int i = e[x]; i; i = edge[i].nex) {
     57             int y = edge[i].v;
     58             if(y == f) {
     59                 continue;
     60             }
     61             DFS_2(y, x, (g[x] - 1ll * h[y] * p[siz[y]] % MO + MO) % MO);
     62         }
     63         return;
     64     }
     65 }t0, t1;
     66 
     67 inline void getp(int n) {
     68     for(int i = 2; i <= n; i++) {
     69         if(!vis[i]) {
     70             p[++top] = i;
     71         }
     72         for(int j = 1; j <= top && i * p[j] <= n; j++) {
     73             vis[i * p[j]] = 1;
     74             if(i % p[j] == 0) {
     75                 break;
     76             }
     77         }
     78     }
     79     return;
     80 }
     81 
     82 int main() {
     83 
     84     getp(2000009);
     85 
     86     int n;
     87     scanf("%d", &n);
     88     t0.init(n);
     89     t1.init(n + 1);
     90     int x, y;
     91     for(int i = 1; i < n; i++) {
     92         scanf("%d%d", &x, &y);
     93         t0.add(x, y);
     94         t0.add(y, x);
     95     }
     96     for(int i = 1; i <= n; i++) {
     97         scanf("%d%d", &x, &y);
     98         t1.add(x, y);
     99         t1.add(y, x);
    100         in[x]++;
    101         in[y]++;
    102         near[x] = y;
    103         near[y] = x;
    104     }
    105 
    106     t0.DFS_1(1, 0);
    107     t0.DFS_2(1, 0, 0);
    108     for(int i = 1; i <= n; i++) {
    109         st.insert(t0.g[i]);
    110         //printf("%d hash = %d 
    ", i, t0.g[i]);
    111     }
    112 
    113     t1.DFS_1(1, 0);
    114     t1.DFS_2(1, 0, 0);
    115     for(int i = 1; i <= n + 1; i++) {
    116         if(in[i] == 1) {
    117             int x = (t1.g[near[i]] - 2 + MO) % MO;
    118             if(st.find(x) != st.end()) {
    119                 printf("%d
    ", i);
    120                 return 0;
    121             }
    122         }
    123     }
    124 
    125     return 0;
    126 }
    AC代码

    更多例题:

  • 相关阅读:
    poj 2516 Minimum Cost (最小费用流 )
    new start
    关于c语言中的声明和定义
    多态性与虚函数之对象切片
    C专家编程之typedef
    QGroupBox设置边框
    多态性与虚函数之继承中的virtual 晚捆绑
    使用Map
    遍历控件
    C专家编程之枚举
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/10817673.html
Copyright © 2020-2023  润新知