• Decorator pattern


    1. 定义,来自wiki(http://en.wikipedia.org/wiki/Decorator_pattern)

    The decorator pattern can be used to extend (decorate) the functionality of a certain object statically, or in some cases at run-time, independently of other instances of the same class, provided some groundwork is done at design time. This is achieved by designing a new decoratorclass that wraps the original class. This wrapping could be achieved by the following sequence of steps:

    1. Subclass the original "Component" class into a "Decorator" class (see UML diagram);
    2. In the Decorator class, add a Component pointer as a field;
    3. Pass a Component to the Decorator constructor to initialize the Component pointer;
    4. In the Decorator class, redirect all "Component" methods to the "Component" pointer; and
    5. In the ConcreteDecorator class, override any Component method(s) whose behavior needs to be modified.

    2. 实例,来自wiki(http://en.wikipedia.org/wiki/Decorator_pattern)

    // The abstract Coffee class defines the functionality of Coffee implemented by decorator
    public abstract class Coffee {
        public abstract double getCost(); // Returns the cost of the coffee
        public abstract String getIngredients(); // Returns the ingredients of the coffee
    }
     
    // Extension of a simple coffee without any extra ingredients
    public class SimpleCoffee extends Coffee {
        public double getCost() {
            return 1;
        }
     
        public String getIngredients() {
            return "Coffee";
        }
    }
    // Abstract decorator class - note that it extends Coffee abstract class
    public abstract class CoffeeDecorator extends Coffee {
        protected final Coffee decoratedCoffee;
        protected String ingredientSeparator = ", ";
     
        public CoffeeDecorator (Coffee decoratedCoffee) {
            this.decoratedCoffee = decoratedCoffee;
        }
     
        public double getCost() { // Implementing methods of the abstract class
            return decoratedCoffee.getCost();
        }
     
        public String getIngredients() {
            return decoratedCoffee.getIngredients();
        }
    }
    // Decorator Milk that mixes milk with coffee.
    // Note it extends CoffeeDecorator.
    class Milk extends CoffeeDecorator {
        public Milk (Coffee decoratedCoffee) {
            super(decoratedCoffee);
        }
     
        public double getCost() { // Overriding methods defined in the abstract superclass
            return super.getCost() + 0.5;
        }
     
        public String getIngredients() {
            return super.getIngredients() + ingredientSeparator + "Milk";
        }
    }
     
    // Decorator Whip that mixes whip with coffee.
    // Note it extends CoffeeDecorator.
    class Whip extends CoffeeDecorator {
        public Whip (Coffee decoratedCoffee) {
            super(decoratedCoffee);
        }
     
        public double getCost() {
            return super.getCost() + 0.7;
        }
     
        public String getIngredients() {
            return super.getIngredients() + ingredientSeparator + "Whip";
        }
    }
     
    // Decorator Sprinkles that mixes sprinkles with coffee.
    // Note it extends CoffeeDecorator.
    class Sprinkles extends CoffeeDecorator {
        public Sprinkles (Coffee decoratedCoffee) {
            super(decoratedCoffee);
        }
     
        public double getCost() {
            return super.getCost() + 0.2;
        }
     
        public String getIngredients() {
            return super.getIngredients() + ingredientSeparator + "Sprinkles";
        }
    }

    测试类

    public class Main {
     
        public static final void main(String[] args) {
        Coffee c = new SimpleCoffee();
        System.out.println("Cost: " + c.getCost() + "; Ingredients: " + c.getIngredients());
     
        c = new Milk(c);
        System.out.println("Cost: " + c.getCost() + "; Ingredients: " + c.getIngredients());
     
        c = new Sprinkles(c);
        System.out.println("Cost: " + c.getCost() + "; Ingredients: " + c.getIngredients());
     
        c = new Whip(c);
        System.out.println("Cost: " + c.getCost() + "; Ingredients: " + c.getIngredients());
     
        // Note that you can also stack more than one decorator of the same type
        c = new Sprinkles(c);
        System.out.println("Cost: " + c.getCost() + "; Ingredients: " + c.getIngredients());
        }
     
    }

    输出结果

    Cost: 1.0; Ingredients: Coffee
    Cost: 1.5; Ingredients: Coffee, Milk
    Cost: 1.7; Ingredients: Coffee, Milk, Sprinkles
    Cost: 2.4; Ingredients: Coffee, Milk, Sprinkles, Whip
    Cost: 2.6; Ingredients: Coffee, Milk, Sprinkles, Whip, Sprinkles

    3. 优缺点(http://tianli.blog.51cto.com/190322/35287/)

    Decorator模式有以下的优缺点:
    1.      比静态继承更灵活 与对象的静态继承相比,Decorator模式提供了更加灵活的向对象添加职责的方式,可以使用添加和分离的方法,用装饰在运行时刻增加和删除职责。使用继承机制增加职责需要创建一个新的子            类,如果需要为原来所有的子类都添加功能的话,每个子类都需要重写,增加系统的复杂度,此外可以为一个特定的Component类提供多个Decorator,这种混合匹配是适用继承很难做到的。
    2.      避免在层次结构高层的类有太多的特征,Decorator模式提供了一种“即用即付”的方法来添加职责,他并不试图在一个复杂的可订制的类中支持所有可预见的特征,相反可以定义一个简单的类,并且用Decorator            类给他逐渐的添加功能,可以从简单的部件组合出复杂的功能。
    3.      Decorator 与它的Component不一样 Decorator是一个透明的包装,如果我们从对象标识的观点出发,一个被装饰了的组件与这个组件是有差别的,因此使用装饰时不应该以来对象标识。
    4.      产生许多小对象,采用Decorator模式进行系统设计往往会产生许多看上去类似的小对象,这些对象仅仅在他们相互连接的方式上有所不同。
  • 相关阅读:
    在日期选择轮中选择的时间转换成年龄
    字符串转换成NSDate类型的 为nil解决方法
    字符串与数组互转
    使用ASI传递post表单..参数是数组
    java synchronized的四种用法
    java 多线程实现的四种方式
    java 高性能Server —— Reactor模型单线程版
    java nio socket使用示例
    java.nio.Buffer 中的 flip()方法
    java NIO 详解
  • 原文地址:https://www.cnblogs.com/davidwang456/p/3844770.html
Copyright © 2020-2023  润新知