• [二叉树]把二元查找树转变成排序的双向链表


      题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。

      比如将二元查找树
                                            10
                                              /    \
                                            6       14
                                          /  \     /  \
                                       4     8  12   16
    转换成双向链表

    4=6=8=10=12=14=16。

      分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。

      思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。

      思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。

    参考代码:

    首先我们定义二元查找树结点的数据结构如下:

     struct BSTreeNode // a node in the binary search tree
        {
            int          m_nValue; // value of node
            BSTreeNode  *m_pLeft;  // left child of node
            BSTreeNode  *m_pRight; // right child of node
        };

    思路一对应的代码:

    ///////////////////////////////////////////////////////////////////////
    // Covert a sub binary-search-tree into a sorted double-linked list
    // Input: pNode - the head of the sub tree
    //        asRight - whether pNode is the right child of its parent
    // Output: if asRight is true, return the least node in the sub-tree
    //         else return the greatest node in the sub-tree
    ///////////////////////////////////////////////////////////////////////
    BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)
    {
          if(!pNode)
                return NULL;
    
          BSTreeNode *pLeft = NULL;
          BSTreeNode *pRight = NULL;
    
          // Convert the left sub-tree
          if(pNode->m_pLeft)
                pLeft = ConvertNode(pNode->m_pLeft, false);
    
          // Connect the greatest node in the left sub-tree to the current node
          if(pLeft)
          {
                pLeft->m_pRight = pNode;
                pNode->m_pLeft = pLeft;
          }
    
          // Convert the right sub-tree
          if(pNode->m_pRight)
                pRight = ConvertNode(pNode->m_pRight, true);
    
          // Connect the least node in the right sub-tree to the current node
          if(pRight)
          {
                pNode->m_pRight = pRight;
                pRight->m_pLeft = pNode;
          }
    
          BSTreeNode *pTemp = pNode;
    
          // If the current node is the right child of its parent, 
          // return the least node in the tree whose root is the current node
          if(asRight)
          {
                while(pTemp->m_pLeft)
                      pTemp = pTemp->m_pLeft;
          }
          // If the current node is the left child of its parent, 
          // return the greatest node in the tree whose root is the current node
          else
          {
                while(pTemp->m_pRight)
                      pTemp = pTemp->m_pRight;
          }
     
          return pTemp;
    }
    
    ///////////////////////////////////////////////////////////////////////
    // Covert a binary search tree into a sorted double-linked list
    // Input: the head of tree
    // Output: the head of sorted double-linked list
    ///////////////////////////////////////////////////////////////////////
    BSTreeNode* Convert(BSTreeNode* pHeadOfTree)
    {
          // As we want to return the head of the sorted double-linked list,
          // we set the second parameter to be true
          return ConvertNode(pHeadOfTree, true);
    }

    思路二对应的代码:

    ///////////////////////////////////////////////////////////////////////
    // Covert a sub binary-search-tree into a sorted double-linked list
    // Input: pNode -           the head of the sub tree
    //        pLastNodeInList - the tail of the double-linked list
    ///////////////////////////////////////////////////////////////////////
    void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
    {
          if(pNode == NULL)
                return;
    
          BSTreeNode *pCurrent = pNode;
    
          // Convert the left sub-tree
          if (pCurrent->m_pLeft != NULL)
                ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
    
          // Put the current node into the double-linked list
          pCurrent->m_pLeft = pLastNodeInList; 
          if(pLastNodeInList != NULL)
                pLastNodeInList->m_pRight = pCurrent;
    
          pLastNodeInList = pCurrent;
    
          // Convert the right sub-tree
          if (pCurrent->m_pRight != NULL)
                ConvertNode(pCurrent->m_pRight, pLastNodeInList);
    }
    
    ///////////////////////////////////////////////////////////////////////
    // Covert a binary search tree into a sorted double-linked list
    // Input: pHeadOfTree - the head of tree
    // Output: the head of sorted double-linked list
    ///////////////////////////////////////////////////////////////////////
    BSTreeNode* Convert_Solution1(BSTreeNode* pHeadOfTree)
    {
          BSTreeNode *pLastNodeInList = NULL;
          ConvertNode(pHeadOfTree, pLastNodeInList);
    
          // Get the head of the double-linked list
          BSTreeNode *pHeadOfList = pLastNodeInList;
          while(pHeadOfList && pHeadOfList->m_pLeft)
                pHeadOfList = pHeadOfList->m_pLeft;
    
          return pHeadOfList;
    }

    FROM:http://zhedahht.blog.163.com/blog/static/254111742007127104759245/

  • 相关阅读:
    ACM学习历程—HDU5410 CRB and His Birthday(动态规划)
    ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)
    ACM学习历程—HDU5396 Expression(递推 && 计数)
    ACM学习历程—HDU 5317 RGCDQ (数论)
    ACM学习历程—HDU 5326 Work(树形递推)
    ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)
    jquery开发js插件
    requireJS
    java进阶之-Maven,svn,git,maven合拼多个项目
    java 项目中每个jar包的作用总结
  • 原文地址:https://www.cnblogs.com/dartagnan/p/2201871.html
Copyright © 2020-2023  润新知