• Codeforces Global Round 15


    A

    (;)
    把每种字母所在的区间求出来,对于每一个(i),看(c_i)是否在其应属的区间,若不在,则答案+1

    B

    (;)
    只有我这个sb卡在B了罢。。。。
    只有一个胜利者是显然的。
    但是如果要判断一个人是否是胜利者需要(O(n))的时间,我们不可能对于每个人都比较一遍。
    这里运用到一个思想是排除法(不去找符合条件的人是谁,先把肯定不符合条件的人pass掉)
    从前往后扫,如果发现(i)被此时待定胜利者(w)打败了,说明其不可能是胜利者(直接踢掉,不用管他了)
    否则说明(w)肯定也不是。
    所以要么我们保留(w),要么把一个前缀的人都踢掉了,后面继续排除。
    这样只会剩下一个人,再和所有人比较就行了。

    C

    (;)
    手玩一下发现,新加的弦不可能存在其中两根,使得这两根不相交。
    将其交换一下,只会使答案更优
    直接贪心就好了

    D

    (;)
    满足其中(n-1)个人是很容易的。
    把满足条件的两个位置连一条边,那么如果要出现(n)条边,其中肯定会出现环。
    也就是存在两个集合(A,B),使得(A)中数的绝对值之和等于(B)
    那么(2^{2n} imes n)判断一下就好了

    E

    (;)
    构造好题。
    对于一种颜色(c),设其出现的位置为(d_{c,1},d_{c,2},...,d_{c,k})
    显然我们只会选相邻的两个位置作为最终答案的一个区间。
    观察条件:(lceil frac{n}{k-1} ceil)这个东西很奇怪。
    发现(k-1)其实就是每种颜色空隙的数量
    有两种想法:
    (n)个区间分成(k-1)组,每组最多有(lceil frac{n}{k-1} ceil)个区间,让每个位置最多属于一组

    (n)个区间分成(lceil frac{n}{k-1} ceil)组,每组最多有个(k-1)区间,让每个位置在每组中至多出现一次
    发现第二种思路比较难搞,得在每个区间都得满足至多出现一次的条件。
    考虑第一种怎么做
    简化后:让组之间没有交集
    按照空隙分组:
    先按(d_{c,2})从小到大排序,然后选前几个为一组,这样相当于以第一个空隙为一组
    接着对剩余的颜色按(d_{c,3})从小到大排序,再选前几个为一组,以此类推
    成功完成了分组

    F

    (;)
    最关键的一点就是,蚂蚁走过一个传送门时,前面的传送门(包括这一个),一定都是开着的
    这个归纳一下差不多就可以了
    然后维护(k_i)表示从第一次走到传送门(i),到走过去用了多长时间。
    (k_i)时,只需要(upper ; bound)一下,再维护一个前缀和即可

  • 相关阅读:
    Cocos Creator脚本开发事例
    java调用sap的webservice(需要登录验证)
    Lua require 相对路径
    C++学习笔记
    Lua MD5加密字符串
    USE " cc.exports.* = value " INSTEAD OF SET GLOBAL VARIABLE"
    cocos2d-x学习笔记
    麻将胡牌算法研究
    Tomcat服务器配置https双向认证(使用keytool生成证书)
    MySQL密码忘了怎么办?MySQL重置root密码方法
  • 原文地址:https://www.cnblogs.com/czyty114/p/15060602.html
Copyright © 2020-2023  润新知