获得凸包的算法可以算是计算几何中最基础的算法之一了。寻找凸包的算法有很多种,Graham Scan算法是一种十分简单高效的二维凸包算法,能够在O(nlogn)的时间内找到凸包。
首先介绍一下二维向量的叉积(这里和真正的叉积还是不同的):对于二维向量a=(x1,y2)和b=(x2,y2),a×b定义为x1*y2-y1*x2。而它的几何意义就是|a||b|sin<a,b>。如果a与b夹角小于180度(逆时针),那么这个值就是正值,大于180度就是负值。需要注意的是,左乘和右乘是不同的。如图所示:
Graham Scan算法的做法是先定下一个起点,一般是最左边的点和最右边的点,然后一个个点扫过去,如果新加入的点和之前已经找到的点所构成的“壳”凸性没有变化,就继续扫,否则就把已经找到的最后一个点删去,再比较凸性,直到凸性不发生变化。分别扫描上下两个“壳”,合并在一起,凸包就找到了。这么说很抽象,我们看图来解释:
我们找下“壳”,上下其实是一样的。首先加入两个点A和C:
然后插入第三个点G,并计算AC×CG的叉积,却发现叉积小于0,也就是说逆时针方向上∠ACG大于180度,于是删去C点,加入G点:
然后就是依照这个步骤便能加入D点。在AD上方是以D为起点。就能够找到AGD和DFEA两个凸壳。合并就得到了凸包。
关于扫描的顺序,有坐标序和极角序两种。坐标序是比较两个点的x坐标,如果小的先被扫描(扫描上凸壳的时候反过来);如果两个点x坐标相同,那么就比较y坐标,小的先被扫描(扫描上凸壳的时候也是反过来)。极角序使用arctan2函数的返回值进行比较,我没写过所以也不是很清楚。
程序可以写得很精简,以下是我用C++写得凸包程序
/*
d[]是一个Point的数组,Point有两个两个属性x和y,同时支持减法操作和det(叉积)。
convex数组保存被选中的凸包的点的编号,cTotal是凸包中点的个数
*/
bool cmpPoint(const Point &a, const Point &b) //比较坐标序所用的比较函数
{
if (a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
void get_convex_hull()
{
sort(d,d+N,cmpPoint);
int Total=0,tmp;
for (int i=0;i<N;++i) //扫描下凸壳
{
while ( (Total>1) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det( //获得凸包中最后两个点的向量
d[i]-d[convex[Total-1]])<=0) ) Total--; //获得准备插入的点和凸包中最后一点的向量,计算叉积
convex[Total++]=i;
}
tmp=Total;
for (int i=N-2;i>=0;--i) //扫描上凸壳
{
while ( (Total>tmp) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
cTotal=Total;
}
我们来看一道题:POJ1113 Wall,题意是给一些点,找一个闭合曲线C,使C能包住所有的点,并且给定的点到C的距离最小为L,问C的周长。稍微画一画就知道这个C的周长是这些点所构成的凸包的周长加上以L为半径的圆的周长。于是求一个凸包再加上2πL就可以了。我的程序如下:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using std::sort;
#define MAXN 1002
int N,L;
double sqr(double a)
{
return a*a;
}
struct Point
{
double x,y;
inline Point operator- (const Point &t)
{
Point ret;
ret.x=x-t.x;
ret.y=y-t.y;
return ret;
}
inline Point operator+ (const Point &t)
{
Point ret;
ret.x=x+t.x;
ret.y=y+t.y;
return ret;
}
inline int det(const Point &t)
{
return x*t.y-t.x*y;
}
inline double dist(Point &t)
{
return sqrt(sqr(x-t.x)+sqr(y-t.y));
}
}d[MAXN];
bool cmpPoint(const Point &a, const Point &b)
{
if (a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
int convex[MAXN],cTotal;
void get_convex_hull()
{
sort(d,d+N,cmpPoint);
int Total=0,tmp;
for (int i=0;i<N;++i)
{
while ( (Total>1) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
tmp=Total;
for (int i=N-2;i>=0;--i)
{
while ( (Total>tmp) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
cTotal=Total;
}
int main()
{
scanf("%d%d",&N,&L);
for (int i=0;i<N;++i)
{
scanf("%lf%lf",&d[i].x,&d[i].y);
}
get_convex_hull();
double Ans=0;
for (int i=0;i<cTotal-1;++i)
{
Ans+=d[convex[i]].dist(d[convex[i+1]]);
}
Ans+=d[convex[0]].dist(d[convex[cTotal-1]]);
Ans+=3.1415926*2*L;
printf("%.0lf
",Ans);
return 0;
}