• UVA 1252 十五 Twenty Questions


    十五 Twenty Questions
    Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu
    Appoint description: 

    Description

    Download as PDF
     

    Consider a closed world and a set of features that are defined for all the objects in the world. Each feature can be answered with ``yes" or ``no". Using those features, we can identify any object from the rest of the objects in the world. In other words, each object can be represented as a fixed-length sequence of booleans. Any object is different from other objects by at least one feature.

    You would like to identify an object from others. For this purpose, you can ask a series of questions to someone who knows what the object is. Every question you can ask is about one of the features. He/she immediately answers each question with ``yes" or ``no" correctly. You can choose the next question after you get the answer to the previous question.

    You kindly pay the answerer 100 yen as a tip for each question. Because you don't have surplus money, it is necessary to minimize the number of questions in the worst case. You don't know what is the correct answer, but fortunately know all the objects in the world. Therefore, you can plan an optimal strategy before you start questioning.

    The problem you have to solve is: given a set of boolean-encoded objects, minimize the maximum number of questions by which every object in the set is identifiable.

    Input 

    The input is a sequence of multiple datasets. Each dataset begins with a line which consists of two integers, m and n: the number of features, and the number of objects, respectively. You can assume 0 < m$ le$11 and 0 < n$ le$128. It is followed by n lines, each of which corresponds to an object. Each line includes a binary string of length m which represent the value (``yes" or ``no") of features. There are no two identical objects.

    The end of the input is indicated by a line containing two zeros. There are at most 100 datasets.

    Output 

    For each dataset, minimize the maximum number of questions by which every object is identifiable and output the result.

    Sample Input 

    8 1 
    11010101 
    11 4 
    00111001100 
    01001101011 
    01010000011 
    01100110001 
    11 16 
    01000101111 
    01011000000 
    01011111001 
    01101101001 
    01110010111 
    01110100111 
    10000001010 
    10010001000 
    10010110100 
    10100010100 
    10101010110 
    10110100010 
    11001010011 
    11011001001 
    11111000111 
    11111011101 
    11 12 
    10000000000 
    01000000000 
    00100000000 
    00010000000 
    00001000000 
    00000100000 
    00000010000 
    00000001000 
    00000000100 
    00000000010 
    00000000001 
    00000000000 
    9 32 
    001000000 
    000100000 
    000010000 
    000001000 
    000000100 
    000000010 
    000000001 
    000000000 
    011000000 
    010100000 
    010010000 
    010001000 
    010000100 
    010000010 
    010000001 
    010000000 
    101000000 
    100100000 
    100010000 
    100001000 
    100000100 
    100000010 
    100000001 
    100000000 
    111000000 
    110100000 
    110010000 
    110001000 
    110000100 
    110000010 
    110000001 
    110000000 
    0 0
    

    Sample Output 

    0 
    2 
    4 
    11 
    9
     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <algorithm>
     4 using namespace std;
     5 const int M=(1<<11)+10;
     6 const int inf=0x3f3f3f3f;
     7 int p[150],n,m;
     8 int dp[M][M];
     9 char a[150];
    10 
    11 int dfs(int s1,int s2)
    12 {
    13     int cnt=0,i,j;
    14     if(dp[s1][s2]<inf)
    15         return dp[s1][s2];
    16     for(i=0;i<n;i++)
    17     {
    18         if((p[i] & s1)==s2)
    19         {
    20             cnt++;
    21         }
    22     }
    23 
    24     if(cnt<=1)
    25     {
    26         dp[s1][s2]=0;
    27         return 0;
    28     }
    29 
    30     for(i=0;i<m;i++)
    31     {
    32         if(s1 & (1<<i))
    33             continue;
    34         int nex=s1 | (1<<i);
    35         dp[s1][s2]=min(dp[s1][s2],max(dfs(nex,s2),dfs(nex,s2^(1<<i)))+1);
    36     }
    37     return dp[s1][s2];
    38 }
    39 
    40 int main()
    41 {
    42     int i,j,k;
    43     while(scanf("%d %d",&m,&n)!=EOF)
    44     {
    45         if(n==0 && m==0)
    46             break;
    47         memset(p,0,sizeof(p));
    48         memset(dp,inf,sizeof(dp));
    49 
    50         for(i=0;i<n;i++)
    51         {
    52             scanf("%s",a);
    53             for(j=0;j<m;j++)
    54             {
    55                 if(a[j]=='1')
    56                     p[i]=p[i] | (1<<j);
    57             }
    58         }
    59 
    60         printf("%d
    ",dfs(0,0));
    61     }
    62     return 0;
    63 }
    View Code
  • 相关阅读:
    我们应当怎样做需求分析
    卓有成效的团队建设经验与见解 Team Leader你会带团队吗?
    一个独立程序员对自己近九个月工作生活的回顾
    KISS My YAGNI,KISS (Keep It Simple, Stupid)和 YAGNI (You Ain’t Gonna Need It)软件开发原则
    程序员新人如何在企业与人打好交道 站在别人的立场想问题,站在自己的立场做事情
    创业团队产品如何战胜大公司的抄袭 腾讯抄你肿么办?
    什么样的程序员才算成熟? 让程序员认清自己的所处的阶段
    HTML的GET方法传递参数样式。
    教您使用java爬虫gecco抓取JD全部商品信息
    JAVA 爬虫Gecco
  • 原文地址:https://www.cnblogs.com/cyd308/p/4771606.html
Copyright © 2020-2023  润新知