• 实验7-使用TensorFlow完成MNIST手写体识别


    逻辑回归

    解决分类问题里最普遍的baseline model就是逻辑回归,简单同时可解释性好,使得它大受欢迎,我们来用tensorflow完成这个模型的搭建。

    1.环境设定

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    import numpy as np
    #import tensorflow as tf
    import tensorflow.compat.v1 as tf
    tf.disable_v2_behavior()
    from tensorflow.examples.tutorials.mnist import input_data
    import time

    2.数据读取

    #使用tensorflow自带的工具加载MNIST手写数字集合
    mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 
    #查看一下数据维度
    mnist.train.images.shape

    #查看target维度
    mnist.train.labels.shape

    3.准备好placeholder

    batch_size = 128
    ## 定义参数的数据类型 数据形状(一般为一维)名称
    X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder') 
    Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder')
    global X

    4.准备好参数/权重

    # tf.Variable(initializer,name) 初始化参数 和 自定义的变量名称
    #tf.random_normal()函数用于从“服从指定正态分布的序列”中随机取出指定个数的值
    w = tf.Variable(tf.random.normal(shape=[784, 10], stddev=0.01), name='weights')
    #tf.zeros() 生成数组 位数 行个数
    b = tf.Variable(tf.zeros([1, 10]), name="bias")

    5.拿到每个类别的score

    #tf.matmul() 两个矩阵中对应元素各自相乘
    logits = tf.matmul(X, w) + b 

    6.计算多分类softmax的loss function

    # 求交叉熵损失
    entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
    # 求平均
    loss = tf.reduce_mean(entropy)

    7.准备好optimier

    这里的最优化用的是随机梯度下降,我们可以选择AdamOptimizer这样的优化器

    learning_rate = 0.01
    #自动进行参数的导数计算及优化
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

    8.在session里执行graph里定义的运算

    #迭代总轮次
    n_epochs = 30
    
    #分配GPU 占用率 
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) 
    
    
    
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # 在Tensorboard里可以看到图的结构
        writer = tf.summary.FileWriter('./graphs/logistic_reg', sess.graph)
    
        start_time = time.time()
        sess.run(tf.global_variables_initializer())    
        n_batches = int(mnist.train.num_examples/batch_size)
        for i in range(n_epochs): # 迭代这么多轮
            total_loss = 0
    
            for _ in range(n_batches):
                X_batch, Y_batch = mnist.train.next_batch(batch_size)
                _, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch}) 
                total_loss += loss_batch
            print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
    
        print('Total time: {0} seconds'.format(time.time() - start_time))
    
        print('Optimization Finished!')
    
        # 测试模型
        
        preds = tf.nn.softmax(logits)
        correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
        accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
        
        n_batches = int(mnist.test.num_examples/batch_size)
        total_correct_preds = 0
        
        for i in range(n_batches):
            X_batch, Y_batch = mnist.test.next_batch(batch_size)
            accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch}) 
            total_correct_preds += accuracy_batch[0]
        
        print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))
    
        writer.close()

  • 相关阅读:
    MySQL学习之EXPLAIN执行计划详解及最佳实践
    MySQL学习之Mysql锁&事务隔离级别
    Mybatis学习之核心原理代码详解
    Mybatis学习之工作流程代码详解
    Mybatis学习之核心配置详解
    Mybatis学习之Mybatis Demo入门使用
    缓存穿透解决方案之布隆过滤器(Bloom Filter)原理及Guava中的实现
    Zookeeper学习之Jute序列化以及通信协议详解
    Zookeeper学习之Zab一致性协议
    Zookeeper学习之ZooKeeper源码分析
  • 原文地址:https://www.cnblogs.com/cxy0210/p/14595744.html
Copyright © 2020-2023  润新知