• Pytorch-Visdom可视化工具


    Visdom相比TensorBoardX,更简洁方便一些(例如对image数据的可视化可以直接使用Tensor,而不必转到cpu上再转为numpy数据),刷新率也更快。

    1.安装visdom

    pip install visdom

    2.开启监听进程

    visdom本质上是一个web服务器,开启web服务器之后程序才能向服务器丢数据,web服务器把数据渲染到网页中去。

    python -m visdom.server

    但是很不幸报错了!ERROR:root:Error [Errno 2] No such file or directory while downloading https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_SVG,所以从头再来,先pip uninstall visdom卸掉visdom,再手动安装。

    1. 从网站下载visdom源文件https://github.com/facebookresearch/visdom并解压
    2. command进入visdom所在文件目录,比如我的是cd F:Chrome_Downloadvisdom-master
    3. 进入目录后执行pip install -e .
    4. 执行成功后,退回到用户目录,重新执行上面的python -m visidom.server
    5. 然后又报错了,一直提示Downloading scripts, this may take a little while,解决方案见https://github.com/casuallyName/document-sharing/tree/master/static
    6. 直到如图所示即启动成功

    3.访问

    用chrome浏览器访问url连接:http://localhost:8097

    没想到又又报错了,页面加载失败(蓝色空白页面如下)

    在visdom安装目录下(我的是F:AnacondaLibsite-packagesvisdom),将static文件夹换掉,下载地址为

    链接:https://pan.baidu.com/s/1fZb-3GSZvk0kRpL73MBgcw
    提取码:np04

    直到出现横条框即visdom可用。

    4.可视化训练

     在之前定义网络结构(参考上一节)的基础上加上Visdom可视化。

    • 在训练-测试的迭代过程之前,定义两条曲线,在训练-测试的过程中再不断填充点以实现曲线随着训练动态增长:
    1 from visdom import Visdom
    2 viz = Visdom()
    3 viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
    4 viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',legend=['loss', 'acc.']))

    第二行Visdom(env="xxx")参数env来设置环境窗口的名称,这里什么都没传,在默认的main窗口下。

    viz.line的前两个参数是曲线的Y和X的坐标(前面是纵轴后面才是横轴),设置了不同的win参数,它们就会在不同的窗口中展示,

    第四行定义的是测试集的loss和acc两条曲线,所以在X等于0时Y给了两个初始值。

    • 为了知道训练了多少个batch,设置一个全局的计数器:
    1 global_step = 0
    • 在每个batch训练完后,为训练曲线添加点,来让曲线实时增长:
    1 global_step += 1
    2 viz.line([loss.item()], [global_step], win='train_loss', update='append')

    这里用win参数来选择是哪条曲线,用update='append'的方式添加曲线的增长点,前面是Y坐标,后面是X坐标。

    • 在每次测试结束后,并在另外两个窗口(用win参数设置)中展示图像(.images)和真实值(文本用.text):
    1 viz.line([[test_loss, correct / len(test_loader.dataset)]],
    2              [global_step], win='test', update='append')
    3 viz.images(data.view(-1, 1, 28, 28), win='x')
    4 viz.text(str(pred.detach().numpy()), win='pred',
    5              opts=dict(title='pred'))

    附上完整代码:

      1 import  torch
      2 import  torch.nn as nn
      3 import  torch.nn.functional as F
      4 import  torch.optim as optim
      5 from   torchvision import datasets, transforms
      6 from visdom import Visdom
      7 
      8 #超参数
      9 batch_size=200
     10 learning_rate=0.01
     11 epochs=10
     12 
     13 #获取训练数据
     14 train_loader = torch.utils.data.DataLoader(
     15     datasets.MNIST('../data', train=True, download=True,          #train=True则得到的是训练集
     16                    transform=transforms.Compose([                 #transform进行数据预处理
     17                        transforms.ToTensor(),                     #转成Tensor类型的数据
     18                        #transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
     19                    ])),
     20     batch_size=batch_size, shuffle=True)                          #按batch_size分出一个batch维度在最前面,shuffle=True打乱顺序
     21 
     22 #获取测试数据
     23 test_loader = torch.utils.data.DataLoader(
     24     datasets.MNIST('../data', train=False, transform=transforms.Compose([
     25         transforms.ToTensor(),
     26         #transforms.Normalize((0.1307,), (0.3081,))
     27     ])),
     28     batch_size=batch_size, shuffle=True)
     29 
     30 
     31 class MLP(nn.Module):
     32 
     33     def __init__(self):
     34         super(MLP, self).__init__()
     35         
     36         self.model = nn.Sequential(         #定义网络的每一层,
     37             nn.Linear(784, 200),
     38             nn.ReLU(inplace=True),
     39             nn.Linear(200, 200),
     40             nn.ReLU(inplace=True),
     41             nn.Linear(200, 10),
     42             nn.ReLU(inplace=True),
     43         )
     44 
     45     def forward(self, x):
     46         x = self.model(x)
     47         return x    
     48 
     49 
     50 net = MLP()
     51 #定义sgd优化器,指明优化参数、学习率,net.parameters()得到这个类所定义的网络的参数[[w1,b1,w2,b2,...]
     52 optimizer = optim.SGD(net.parameters(), lr=learning_rate)
     53 criteon = nn.CrossEntropyLoss()
     54 
     55 viz = Visdom()
     56 viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
     57 viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
     58                                                    legend=['loss', 'acc.%']))
     59 global_step = 0
     60 
     61 
     62 for epoch in range(epochs):
     63 
     64     for batch_idx, (data, target) in enumerate(train_loader):
     65         data = data.view(-1, 28*28)          #将二维的图片数据摊平[样本数,784]
     66 
     67         logits = net(data)                   #前向传播
     68         loss = criteon(logits, target)       #nn.CrossEntropyLoss()自带Softmax
     69 
     70         optimizer.zero_grad()                #梯度信息清空   
     71         loss.backward()                      #反向传播获取梯度
     72         optimizer.step()                     #优化器更新
     73 
     74         global_step += 1
     75         viz.line([loss.item()], [global_step], win='train_loss', update='append')
     76 
     77     
     78         if batch_idx % 100 == 0:             #每100个batch输出一次信息
     79             print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
     80                 epoch, batch_idx * len(data), len(train_loader.dataset),
     81                        100. * batch_idx / len(train_loader), loss.item()))
     82 
     83 
     84     test_loss = 0
     85     correct = 0                                         #correct记录正确分类的样本数
     86     for data, target in test_loader:
     87         data = data.view(-1, 28 * 28)
     88         logits = net(data)
     89         test_loss += criteon(logits, target).item()     #其实就是criteon(logits, target)的值,标量
     90         
     91         pred = logits.data.max(dim=1)[1]                #也可以写成pred=logits.argmax(dim=1)
     92         correct += pred.eq(target.data).sum()
     93 
     94 
     95     viz.line([[test_loss, 100.* correct / len(test_loader.dataset)]],
     96              [global_step], win='test', update='append')
     97     viz.images(data.view(-1, 1, 28, 28), win='x')
     98     viz.text(str(pred.detach().numpy()), win='pred',
     99              opts=dict(title='pred'))
    100 
    101 
    102     test_loss /= len(test_loader.dataset)
    103     print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
    104         test_loss, correct, len(test_loader.dataset),
    105         100. * correct / len(test_loader.dataset)))

    Train Epoch: 0 [0/60000 (0%)] Loss: 2.301824
    Train Epoch: 0 [20000/60000 (33%)] Loss: 2.285871
    Train Epoch: 0 [40000/60000 (67%)] Loss: 2.262092

    Test set: Average loss: 0.0112, Accuracy: 3499/10000 (35%)

    Train Epoch: 1 [0/60000 (0%)] Loss: 2.226518
    Train Epoch: 1 [20000/60000 (33%)] Loss: 2.188961
    Train Epoch: 1 [40000/60000 (67%)] Loss: 2.087539

    Test set: Average loss: 0.0101, Accuracy: 3653/10000 (37%)

    Train Epoch: 2 [0/60000 (0%)] Loss: 1.965714
    Train Epoch: 2 [20000/60000 (33%)] Loss: 1.886761
    Train Epoch: 2 [40000/60000 (67%)] Loss: 1.871282

    Test set: Average loss: 0.0088, Accuracy: 4404/10000 (44%)

    Train Epoch: 3 [0/60000 (0%)] Loss: 1.822776
    Train Epoch: 3 [20000/60000 (33%)] Loss: 1.687571
    Train Epoch: 3 [40000/60000 (67%)] Loss: 1.720948

    Test set: Average loss: 0.0079, Accuracy: 4717/10000 (47%)

    Train Epoch: 4 [0/60000 (0%)] Loss: 1.589682
    Train Epoch: 4 [20000/60000 (33%)] Loss: 1.544680
    Train Epoch: 4 [40000/60000 (67%)] Loss: 1.413445

    Test set: Average loss: 0.0074, Accuracy: 4807/10000 (48%)

    Train Epoch: 5 [0/60000 (0%)] Loss: 1.410685
    Train Epoch: 5 [20000/60000 (33%)] Loss: 1.442557
    Train Epoch: 5 [40000/60000 (67%)] Loss: 1.318121

    Test set: Average loss: 0.0067, Accuracy: 5742/10000 (57%)

    Train Epoch: 6 [0/60000 (0%)] Loss: 1.244786
    Train Epoch: 6 [20000/60000 (33%)] Loss: 1.322500
    Train Epoch: 6 [40000/60000 (67%)] Loss: 1.340830

    Test set: Average loss: 0.0059, Accuracy: 6304/10000 (63%)

    Train Epoch: 7 [0/60000 (0%)] Loss: 1.295525
    Train Epoch: 7 [20000/60000 (33%)] Loss: 1.222254
    Train Epoch: 7 [40000/60000 (67%)] Loss: 1.070692

    Test set: Average loss: 0.0041, Accuracy: 7704/10000 (77%)

    Train Epoch: 8 [0/60000 (0%)] Loss: 0.833216
    Train Epoch: 8 [20000/60000 (33%)] Loss: 0.719662
    Train Epoch: 8 [40000/60000 (67%)] Loss: 0.654462

    Test set: Average loss: 0.0028, Accuracy: 8470/10000 (85%)

    Train Epoch: 9 [0/60000 (0%)] Loss: 0.497108
    Train Epoch: 9 [20000/60000 (33%)] Loss: 0.509768
    Train Epoch: 9 [40000/60000 (67%)] Loss: 0.493004

    Test set: Average loss: 0.0023, Accuracy: 8681/10000 (87%)

    Tip:一开始viz.images()那一句图片没有显示,需要把第18和26行的代码注释掉,显示数据的时候不需要标准化。

  • 相关阅读:
    父子组件例子
    指令
    使用git将代码推到coding
    vue生命周期
    vue 父子组件
    vuex
    使用vue与element组件
    vue02
    使用vue
    telnet 使用
  • 原文地址:https://www.cnblogs.com/cxq1126/p/13285150.html
Copyright © 2020-2023  润新知