• LOJ #6538. 烷基计数 加强版 加强版(生成函数,burnside引理,多项式牛顿迭代)


    传送门.

    不妨设(A(x))表示答案。

    对于一个点,考虑它的三个子节点,直接卷起来是(A(x)^3),但是这样肯定会计重,因为我们要的是无序的子节点。

    那么用burnside引理,枚举一个排列,一个环的选择要相同,如果环的大小是y,则对应(A(x^y))

    最后可以得到:
    (A(x)=x{A(x)^3+3A(x^2)A(x)+2A(x^3)over 6}+1)

    分治NTT可以解这个方程,不过因为有3次的,比较复杂,考虑用牛顿迭代:
    (F(A(x))=x{A(x)^3+3A(x^2)A(x)+2A(x^3)over 6}+1-A(x)=0)

    (new A(x)=A(x)-{F(A(x))over F(A(x))'})

    问题在于(F(A(x)))中有(A(x^2)、A(x^3)、x)这样的项,如何求导。

    注意牛顿迭代的倍增中,已经求出了(mod~x^{n/2})的答案,那么(A(x^2)、A(x^3)、x)是已知的,可以视作常数。

    所以(F(A(x))'=x{3A(x)^2 + 3A(x^2)over 6} - 1)

    Code:

    #include<bits/stdc++.h>
    #define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
    #define ff(i, x, y) for(int i = x, B = y; i <  B; i ++)
    #define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
    #define ll long long
    #define pp printf
    #define hh pp("
    ")
    using namespace std;
    
    const int mo = 998244353;
    
    ll ksm(ll x, ll y) {
    	ll s = 1;
    	for(; y; y /= 2, x = x * x % mo)
    		if(y & 1) s = s * x % mo;
    	return s;
    }
    
    typedef vector<ll> V;
    #define pb push_back
    #define si size()
    #define re resize
    
    namespace ntt {
    const int nm = 1 << 18;
    int r[nm]; ll w[nm], a[nm];
    void build() {
    	for(int n = 1; n < nm; n *= 2) {
    		ll v = ksm(3, (mo - 1) / 2 / n)	;
    		w[n] = 1;
    		ff(i, 1, n) w[n + i] = w[n + i - 1] * v % mo;
    	}
    }
    void dft(V &c, int f) {
    	int n = c.si;
    	ff(i, 0, n) a[i] = c[i];
    	ff(i, 0, n) {
    		r[i] = r[i / 2] / 2 + (i & 1) * n / 2;
    		if(i < r[i]) swap(a[i], a[r[i]]);
    	} ll b;
    	for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i) ff(k, 0, i)
    		b = a[i + j + k] * w[i + k], a[i + j + k] = (a[j + k] - b) % mo, a[j + k] = (a[j + k] + b) % mo;
    	if(f == -1) {
    		reverse(a + 1, a + n);
    		b = ksm(n, mo - 2);
    		ff(i, 0, n) a[i] = (a[i] + mo) * b % mo;
    	}
    	ff(i, 0, n) c[i] = a[i];
    }
    }
    using ntt :: dft;
    
    V operator *(V a, V b) {
    	int n0 = a.si + b.si - 1, n = 1;
    	while(n < n0) n *= 2;
    	a.re(n); b.re(n);
    	dft(a, 1); dft(b, 1);
    	ff(i, 0, n) a[i] = a[i] * b[i] % mo;
    	dft(a, -1);
    	a.re(n0); return a;
    }
    
    V operator +(V a, V b) {
    	a.re(max(a.si, b.si));
    	ff(i, 0, b.si) a[i] = (a[i] + b[i]) % mo;
    	return a;
    }
    
    V operator -(V a, V b) {
    	a.re(max(a.si, b.si));
    	ff(i, 0, b.si) a[i] = (a[i] - b[i] + mo) % mo;
    	return a;
    }
    
    V operator * (V a, int b) {
    	ff(i, 0, a.si) a[i] = a[i] * b % mo;
    	return a;
    }
    
    V qni(V a) {
    	V b; b.resize(1); b[0] = ksm(a[0], mo - 2);
    	for(int n = 2; n < a.si * 2; n *= 2) {
    		V c = a; c.re(n); c.re(2 * n);
    		V d = b; b.re(2 * n); d.re(n);
    		dft(b, 1); dft(c, 1);
    		ff(i, 0, b.si) b[i] = b[i] * b[i] % mo * c[i] % mo;
    		dft(b, -1); b.re(n);
    		ff(i, 0, n) b[i] = (2 * d[i] - b[i] + mo) % mo;
    	}
    	b.re(a.si); return b;
    }
    
    V yy(V a) {
    	a.insert(a.begin(), 0);
    	return a;
    }
    V stay(V a, int y, int n) {
    	V b; b.resize(n);
    	int mx = a.si - 1; mx = min(mx, (n - 1) / y);
    	fo(i, 0, mx) b[i * y] = a[i];
    	return b;
    }
    
    const ll ni6 = ksm(6, mo - 2);
    
    V newton(int n0) {
    	V b; b.re(1); b[0] = 1;
    	for(int n = 2; n <= n0 * 2; n *= 2) {
    		V c = b * b * b + stay(b, 2, n) * b * 3 + stay(b, 3, n) * 2;
    		c = yy(c * ni6); c.re(n);
    		c[0] ++; c = c - b;
    		V d = b * b * 3 + stay(b, 2, n) * 3;
    		d = yy(d * ni6); d[0] --; d.re(n);
    		b = b - c * qni(d); b.re(n);
    	}
    	return b;
    }
    
    int n;
    
    
    int main() {
    	ntt :: build();
    	scanf("%d", &n);
    	V a = newton(n);
    	pp("%lld
    ", a[n]);
    }
    
  • 相关阅读:
    swift4.2
    swift4.2 打印devicetoken
    swift4.2
    (二十三)Dbutils 工具介绍
    (二十二)自定义简化版JDBC(Dbutils框架的设计思想)
    (二十一)配置三种开源数据库连接池
    (二十)自定义数据库连接池
    (十九)事务
    (十八)JDBC获取存储过程和主键
    (十七)使用JDBC进行批处理
  • 原文地址:https://www.cnblogs.com/coldchair/p/11350405.html
Copyright © 2020-2023  润新知