• [LeetCode] Combination Sum II, Solution



    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
    Each number in C may only be used once in the combination.
    Note:
    • All numbers (including target) will be positive integers.
    • Elements in a combination (a1a2, … , ak) must be in non-descending order. (ie, a1 â‰¤ a2 â‰¤ … ≤ ak).
    • The solution set must not contain duplicate combinations.
    For example, given candidate set 10,1,2,7,6,1,5 and target 8
    A solution set is: 
    [1, 7] 
    [1, 2, 5] 
    [2, 6] 
    [1, 1, 6] 
    » Solve this problem

    [Thoughts]
    Very similar with previous "Combination Sum". The only difference is marked as red in Code part. Need to handle the index and skip duplicate candidate.


    [Code]
    1:    vector<vector<int> > combinationSum2(vector<int> &num, int target) {  
    2: // Start typing your C/C++ solution below
    3: // DO NOT write int main() function
    4: // Start typing your C/C++ solution below
    5: // DO NOT write int main() function
    6: vector<vector<int> > result;
    7: vector<int> solution;
    8: int sum=0;
    9: std::sort(num.begin(), num.end());
    10: GetCombinations(num,sum, 0, target, solution, result);
    11: return result;
    12: }
    13: void GetCombinations(
    14: vector<int>& candidates,
    15: int& sum,
    16: int level,
    17: int target,
    18: vector<int>& solution,
    19: vector<vector<int> >& result)
    20: {
    21: if(sum > target) return;
    22: if(sum == target)
    23: {
    24: result.push_back(solution);
    25: return;
    26: }
    27: for(int i =level; i< candidates.size(); i++)
    28: {
    29: sum+=candidates[i];
    30: solution.push_back(candidates[i]);
    31: GetCombinations(candidates, sum,
    i+1, target, solution, result);
    32: solution.pop_back();
    33: sum-=candidates[i];
    34:
    while(i<candidates.size()-1 && candidates[i] == candidates[i+1]) i++;
    35: }
    36: }


  • 相关阅读:
    爬虫基础1 怎么使用浏览器查看网络请求
    前端模块化总结(commonJs,AMD,CMD,ES6 Module)
    js强制类型转换规则
    vue-cli3中使用mxgraph的一些总结
    js概念笔记(this)
    js概念笔记(for循环,模块化)
    根据对象数组的某一属性排序
    从svg诞生的panda
    gulp笔记(从开发到发布)
    webpack4.x学习笔记
  • 原文地址:https://www.cnblogs.com/codingtmd/p/5078918.html
Copyright © 2020-2023  润新知