Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
» Solve this problem10,1,2,7,6,1,5
and target 8
, A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
[Thoughts]
Very similar with previous "Combination Sum". The only difference is marked as red in Code part. Need to handle the index and skip duplicate candidate.
[Code]
1: vector<vector<int> > combinationSum2(vector<int> &num, int target) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: // Start typing your C/C++ solution below
5: // DO NOT write int main() function
6: vector<vector<int> > result;
7: vector<int> solution;
8: int sum=0;
9: std::sort(num.begin(), num.end());
10: GetCombinations(num,sum, 0, target, solution, result);
11: return result;
12: }
13: void GetCombinations(
14: vector<int>& candidates,
15: int& sum,
16: int level,
17: int target,
18: vector<int>& solution,
19: vector<vector<int> >& result)
20: {
21: if(sum > target) return;
22: if(sum == target)
23: {
24: result.push_back(solution);
25: return;
26: }
27: for(int i =level; i< candidates.size(); i++)
28: {
29: sum+=candidates[i];
30: solution.push_back(candidates[i]);
31: GetCombinations(candidates, sum,i+1
, target, solution, result);
32: solution.pop_back();
33: sum-=candidates[i];
34:while(i<candidates.size()-1 && candidates[i] == candidates[i+1]) i++;
35: }
36: }