• 回溯法总结


    转  http://www.zhimengzhe.com/bianchengjiaocheng/Javabiancheng/257227.html

    1、回溯法

    回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

    如果需要求所有的解,则需要对每个状态进行搜索。(函数返回值设为void)如果要求存在一个解,那么找到某个解直接返回即可。(函数返回值设为boolean)

    2、算法框架

    回溯法主要分为求所有的解求存在一个解,其代码框架如下所示。

    核心把握:

    结果收集条件(回溯结束条件)继续进入下一层搜索条件搜索上界下界

    //求所有解的算法框架
        public void backtracting(temp){
            if("temp是一个结果"){  //结果收集条件
                加入结果集;
                return;
            }
            for(j=start;j<= end;j++){
                if("不满足加入条件") continue;
                temp.add(a); //加入当前元素
                backtracting(j+1); //继续进行下一步搜索
                temp.remove(a); //回溯的清理工作,把上一步的加入结果删除
            }
        }
        //求存在解的算法框架
        public boolean backtracting(temp){
            if("temp是一个结果"){  //结果收集条件
                加入结果集;
                return true;
            }
            for(j=start;j<= end;j++){
                if("不满足加入条件") continue;
                temp.add(a); //加入当前元素
                if(backtracting(j+1))
                    return true; //继续进行下一步搜索
                temp.remove(a); //回溯的清理工作,把上一步的加入结果删除
                return false;
            }
        }


    3、回溯法解题的一般步骤

    (1)针对所给问题,确定问题的解空间: 首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
    
    
    (2)确定结点的扩展搜索规则,搜索的结果一定要包括要求的解。
    
    
    (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索(求存在解的问题会出现剪枝)。


    4、常见题目示例

    77. Combinations

    Given two integersnandk, return all possible combinations ofknumbers out of 1 ...n.

    For example,
    Ifn= 4 andk= 2, a solution is:

    [
      [2,4],
      [3,4],
      [2,3],
      [1,2],
      [1,3],
      [1,4],
    ]

    题目:从1----n中选出k个数作为组合,求出所有的组合具体的序列。

    思路:回溯法,每次从下界开始遍历,到上界结束。满足size() == k 则加入结果,所有解都求出则结束遍历。也可以用二进制模拟的方法。

    public class Solution {
        List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> combine(int n, int k) {
            if(k==0)
                return res;
            helper(k,n,1,new LinkedList<Integer>());
            return res;
    
        }
        public void helper(int k,int n,int start,List<Integer> out){   
            if(k<=0)
                return;
            if(k == out.size()){
                List<Integer> temp = new LinkedList<Integer>(out);
                res.add(temp);
                return;
            }
            for(int i=start;i<=n;i++){
                out.add(i);
                helper(k,n,i+1,out);  //因为是组合,元素无关顺序,所以每次从下一步进行搜索
                out.remove(out.size()-1);
            }
        }
    }

    39. Combination Sum

    Given asetof candidate numbers (C)(without duplicates)and a target number (T), find all unique combinations inCwhere the candidate numbers sums toT.

    Thesamerepeated number may be chosen fromCunlimited number of times.

    Note:

    All numbers (including target) will be positive integers.The solution set must not contain duplicate combinations.

    For example, given candidate set[2, 3, 6, 7]and target7,
    A solution set is:

    [
      [7],
      [2, 2, 3]
    ]

    题目:求一个set之中【没有相同的元素】,和为target的组合数。

    思路:回溯,收集条件即为当前序列的 target == 0,其他和求组合一样。

    public class Solution {
        public List<List<Integer>> list = new LinkedList<List<Integer>>();
        public List<List<Integer>> combinationSum(int[] candidates, int target) {
            if(candidates.length == 0)
                return list;
            helper(candidates,target,new LinkedList<Integer>(),0);
            return list;
    
        }
        public void helper(int[] candidates,int target,List<Integer> temp,int start){ //维护一个target代表当前的和,0表示temp元素之和等于target,
            if(target<0)                                                              //为了便于判断收集条件
                return;
            if(target == 0){
                list.add(new LinkedList<Integer>(temp));
                return;
            }
            for(int i=start;i<candidates.length;i++){
                temp.add(candidates[i]);
                helper(candidates,target-candidates[i],temp,i);
                temp.remove(temp.size()-1);
            }
        }
    }

    40. Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations inCwhere the candidate numbers sums toT.

    Each number inCmay only be usedoncein the combination.

    Note:

    All numbers (including target) will be positive integers.The solution set must not contain duplicate combinations.

    For example, given candidate set[10, 1, 2, 7, 6, 1, 5]and target8,
    A solution set is:

    [
      [1, 7],
      [1, 2, 5],
      [2, 6],
      [1, 1, 6]
    ]

    题目:求一个set之中【有相同的元素】,和为target的组合数【组合不能重复】。

    思路:在回溯之前的条件判断中加入和前一个元素相比,如果相同就不加入。 nums[i] == nums[i-1] continue;

    public class Solution {
        public List<List<Integer>> list = new LinkedList<List<Integer>>();
        public List<List<Integer>> combinationSum2(int[] candidates, int target) {
            Arrays.sort(candidates);
            if(candidates.length == 0)
                return list;
            helper(candidates,target,new LinkedList<Integer>(),0);
            return list;
    
        }
        public void helper(int[] candidates,int target,List<Integer> temp,int start){
            if(target<0)
                return;
            if(target == 0){
                list.add(new LinkedList<Integer>(temp));
                return;
            }
            for(int i=start;i<candidates.length;i++){
                if(i > start && candidates[i] == candidates[i-1]) continue;
                temp.add(candidates[i]);
                helper(candidates,target-candidates[i],temp,i+1);
                temp.remove(temp.size()-1);
            }
        }
    }

    216. Combination Sum III

    Find all possible combinations ofknumbers that add up to a numbern, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

    Example 1:

    Input:k= 3,n= 7

    Output:

    [[1,2,4]]
    

    Example 2:

    Input:k= 3,n= 9

    Output:

    [[1,2,6], [1,3,5], [2,3,4]]

    题目:在1-----9中找出k个元素使其相加等于n

    思路:和前面的题类似,回溯下界1 上界9 ,收集的时候限定条件改为 temp.size() == k && target == 0

    public class Solution {
        List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> combinationSum3(int k, int n) {
            if(k == 0){
                return res;
            }
            hleper(n,k,1,new LinkedList<Integer>());
            return res;
        }
        public void hleper(int sum,int k,int start,List<Integer> templist){
            if(sum < 0) return;
            if(sum == 0 && templist.size()==k) {
                List<Integer> li = new ArrayList<Integer>(templist);
                res.add(li);
                return;
            }
            for(int i=start;i<=9;i++){
                templist.add(i);
                hleper(sum-i,k,i+1,templist);
                templist.remove(templist.size()-1);
            }
    
        }
    }

    46. Permutations

    Given a collection ofdistinctnumbers, return all possible permutations.

    For example,
    [1,2,3]have the following permutations:

    [
      [1,2,3],
      [1,3,2],
      [2,1,3],
      [2,3,1],
      [3,1,2],
      [3,2,1]
    ]

    题目:求出0一串不同的数字的全排列。

    思路:1、回溯法深搜,每次都从0------end搜索,不过需要有一个标记数组,来记录哪些已经访问过了,回溯的时候加入的元素以及标记都需要清除。

    public class Solution {
        List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> permute(int[] nums) {
            if(nums.length == 0)
                return res;
            int[] temp = new int[nums.length+1];
            helper(nums,new LinkedList<Integer>(),temp);
            return res;
        }
        public void helper(int[] nums,List<Integer> out,int[] visited){
    
            if(nums.length == out.size()){
                List<Integer> temp = new LinkedList<Integer>(out);
                res.add(temp);
                return;
            }
            for(int i=0;i<nums.length;i++){
                if(visited[i] == 0){
                    visited[i]=1;
                    out.add(nums[i]);
                    helper(nums,out,visited);
                    visited[i]=0;           //标记清除
                    out.remove(out.size()-1); //临时结果回溯
                }
            }
        }
    }

    47. Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations.

    For example,
    [1,1,2]have the following unique permutations:

    [
      [1,1,2],
      [1,2,1],
      [2,1,1]
    ]

    题目:给出含有相同数字的元素,求所有元素的排列。

    思路:当nums[i] == nums[i-1] 时候,直接进行下一轮搜索,因为如果进行深搜索的话,得出的结果会和之前的重复。即在if(条件处)限定具体的条件。

    public class Solution {
        public List<List<Integer>> list = new LinkedList<List<Integer>>();
        public List<List<Integer>> permuteUnique(int[] nums) {
            Arrays.sort(nums);
            if(nums.length == 0)
                return list;
            int[] visited = new int[nums.length+1];
            helper(nums,new LinkedList<Integer>(),visited);
            return list;
    
        }
        public void helper(int[] nums,List<Integer> temp,int[] visited){
            if(temp.size() == nums.length){
                list.add(new LinkedList<Integer>(temp));
                return;
            }
            for(int i=0;i<nums.length;i++){
                if (i>0 && nums[i]==nums[i-1]&&visited[i-1]==1) continue;  //具体的限定nums[i-1]==nums[i]则进行下一轮搜索,同时引入标记矩阵。
                if(visited[i] == 0){
                    visited[i]=1;
                    temp.add(nums[i]);
                    helper(nums,temp,visited);
                    visited[i]=0;
                    temp.remove(temp.size()-1);
                }
    
            }
    
        }
    }

    22. Generate Parentheses

    Givennpairs of parentheses, write a function to generate all combinations of well-formed parentheses.

    For example, givenn= 3, a solution set is:

    [
      "((()))",
      "(()())",
      "(())()",
      "()(())",
      "()()()"
    ]

    题目:求出所有有效括号的全排列

    思路:针对一个长度为2n的合法排列,第1到2n个位置都满足如下规则:左括号的个数大于等于右括号的个数

    设left和right分别为剩余的左右括号数目,则使用递归求解可以分为以下几种情况
    1、left>0  可以继续加括号
    2、left=0 and right=0 结果收集
    3、right>0 还需要满足right>left加入右括号
    public class Solution {
        public List<String> list = new LinkedList<String>();
        public List<String> generateParenthesis(int n) {
            if(n == 0)
                return list;
            generate(n,n,"",list);
            return list;
    
        }
        public void generate(int left,int right,String res,List<String> list){
            if(left == 0 && right == 0){
                list.add(res);
                return;
            }
            if(left>0){
                generate(left-1,right,res+"(",list);
            }
            if(right>0 && right>left){
                generate(left,right-1,res+")",list);
            }
    
        }
    }
    78. Subsets

    Given a set ofdistinctintegers,nums, return all possible subsets.

    Note:The solution set must not contain duplicate subsets.

    For example,
    Ifnums=[1,2,3], a solution is:

    [
      [3],
      [1],
      [2],
      [1,2,3],
      [1,3],
      [2,3],
      [1,2],
      []
    ]
    题目:求一个集合的子集,集合中不包含相同元素
    思路:1、二进制模拟运算,每一个组合代表一个二进制(1代表取,0代表不取)。2、回溯法,和求组合的方式类似,不过收集条件改为来一个收集一个,即不加任何
    收集条件,也可以看成if(true) 收集;
    //二进制模拟计算
    public class Solution {
        List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> subsets(int[] nums) {
            int n = nums.length;
            int count =1<<n;
            for(int i=0;i<count;i++){
                List<Integer> temp = new LinkedList<Integer>();
                int k=i;
                for(int j=0;j<n;j++){
                    int flag = k&1;
                    k=k>>1;
                    if(flag==0)
                        temp.add(nums[j]);
                }
                res.add(temp);
            }
            return res;
        }
    }
    //回溯法
    public class Solution {
        public List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> subsets(int[] nums) {
            if(nums.length == 0)
                return res;
            helper(new LinkedList<Integer>(),0,nums);
            return res;
    
        }
        public void helper(List<Integer> temp,int start,int[] nums){
            res.add(new LinkedList<Integer>(temp));
            for(int i=start;i<nums.length;i++){
                temp.add(nums[i]);
                helper(temp,i+1,nums);
                temp.remove(temp.size()-1);
            }
        }
    }
    90. Subsets II

    Given a collection of integers that might contain duplicates,nums, return all possible subsets.

    Note:The solution set must not contain duplicate subsets.

    For example,
    Ifnums=[1,2,2], a solution is:

    [
      [2],
      [1],
      [1,2,2],
      [2,2],
      [1,2],
      []
    ]
    题目:求含有重复元素的数组的子集合不能包含两个相同的子集合【和数学的集合不同】。
    思路:先排序,递归进入下一层的条件 nums[i] != nums[i-1]。
    public class Solution {
        public List<List<Integer>> res = new LinkedList<List<Integer>>();
        public List<List<Integer>> subsetsWithDup(int[] nums) {
            Arrays.sort(nums);
            if(nums.length == 0)
                return res;
            helper(new LinkedList<Integer>(),0,nums);
            return res;
    
        }
        public void helper(List<Integer> temp,int start,int[] nums){
            res.add(new LinkedList<Integer>(temp));
            for(int i=start;i<nums.length;i++){
                if(i>start && nums[i]==nums[i-1]) continue;
                temp.add(nums[i]);
                helper(temp,i+1,nums);
                temp.remove(temp.size()-1);
            }
        }
    }
    526. Beautiful Arrangement

    Suppose you haveNintegers from 1 to N. We define a beautiful arrangement as an array that is constructed by theseNnumbers successfully if one of the following is true for the ithposition (1 ≤ i ≤ N) in this array:

    The number at the ithposition is divisible byi.iis divisible by the number at the ithposition.

    Now given N, how many beautiful arrangements can you construct?

    Example 1:

    Input: 2
    Output: 2
    Explanation: 
    
    The first beautiful arrangement is [1, 2]:
    Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
    Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
    The second beautiful arrangement is [2, 1]:
    Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
    Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
    题目:这道题给了我们1到N,总共N个正数,然后定义了一种优美排列方式,对于该排列中的所有数,如果数字可以整除下标,或者下标可以整除数字,那么我们就是优美排列,让我们求出所有优美排列的个数。
    思路:pos表示下标,排列完成,并记录排列位置,visited是否被访问,使用回溯。在进行下一步的搜索的时候条件
    为 pos%i ==0 || i%pos == 0 && visited[i] = 0 没有被访问过并且可以被收集。收集条件为pso>n。
    public class Solution {
        int count = 0;
        public int countArrangement(int N) {
            if(N == 0)
                return 0;
            int[] visited = new int[N+1];
            helper(visited,1,N);
            return count;
        }
        public void helper(int[] visited,int pos, int n){
            if(pos>n){
                count ++;
                return;
            }
            for(int i=1;i<=n;i++){
                if(visited[i] == 0 && (pos%i==0 || i%pos==0)){
                    visited[i]=1;
                    helper(visited,pos+1,n);
                    visited[i]=0;
                }
            }
        }
    }
  • 相关阅读:
    Java第三季
    LeetCode(10)Regular Expression Matching
    LeetCode(9)Palindrome Number
    shell基础编程
    LeetCode(8)String to Integer (atoi)
    使用python绘制词云
    我的书单
    LeetCode(7)Reverse Integer
    获取新浪微博的Access_token
    c语言中,常见数据类型的字节数
  • 原文地址:https://www.cnblogs.com/codingtao/p/6830313.html
Copyright © 2020-2023  润新知