• 连续子序列的最大乘积


    问题描述

      给定一个整数序列,序列中可能含有0,正数,负数,求出连续子序列乘积的最大值

    暴力解法

      双层循环,一一遍历,每次将当前结果与前次结果要比较,如果大于前次结果,更新最大值,时间复杂度为O(n2),复杂度较高,代码略

    动态规划解法

      对于序列arr,maxDp[k]表示以arr[k](必须包含arr[k])结尾的最大连续子序列乘积值,minDp[k]表示以arr[k](必须包含arr[k])结尾的最小连续子序列乘积值,则对于maxDp[k + 1],表示以arr[k + 1]结尾的最大连续子序列乘积值,可分以下几种情况:

      1.maxDp[k] > 0 && arr[k + 1],则maxDp[k + 1] = maxDp[k] * arr[k + 1],如下图所示

      2.maxDp[k] 与 arr[k + 1] 中一个为正数,一个为负数,如arr[k + 1]为负数,因arr[k + 1]已经为负数,如果和前面的maxDp[k]相乘,结果会更小,而且maxDp[k + 1] 必须包含arr[k + 1],所以当前最大值maxDp[k + 1] = arr[k + 1],如果maxDp[k]为负数,而arr[k + 1]为正数,其结果仍然不变。

      3.maxDp[k]为正数,而arr[k + 1]为负数,其中在arr[0]到arr[k]之前有负数, 这个时候,我们会发现arr[k+1] * maxDp[k]不一定是最大的值。在这个示例中,如果再乘上前面的-2得到的结果才是最后最大的。而前面包含-2的这个序列,必然是一个前面序列里的最小值。同样,如果前面的序列里maxDp[k]是负数,而且a[k+1]也是负数,则它们的直接乘积就是最大值

    经上分析可知,其状态转移方程为:

    maxDp[k + 1] = max(arr[k + 1],max(minDp[k] * arr[i],maxDp[k] * arr[k + 1]));

    minDp[k + 1] = min(arr[k + 1],min(maxDp[k] * arr[i],minDp[k] * arr[k + 1]));

    代码如下:

     1 void MaxSeqMultiple(vector<int> &arr){
     2     vector<int> maxDp(arr.size());
     3     vector<int> minDp(arr.size());
     4     maxDp[0] = arr[0];
     5     minDp[0] = arr[0];
     6     int result = arr[0];
     7     vector<int> ret;
     8     for(int i = 1;i < arr.size(); i++){
     9         maxDp[i] = max(arr[i],max(minDp[i - 1] * arr[i],maxDp[i - 1] * arr[i]));
    10         minDp[i] = min(arr[i],min(maxDp[i - 1] * arr[i],minDp[i - 1] * arr[i]));
    11         result = max(result,maxDp[i]);
    12     }
    13     cout << result << endl;
    14 } 

    参考链接:连续子序列最大和与乘积问题的分析

    只为训练自己,时刻锤炼一个程序员最基本的技能!
  • 相关阅读:
    RefineDet by hs
    RFCN by hs
    经典排序算法总结(二)by Rose
    Libra R-CNN——“平衡学习” by Rose
    经典排序算法总结(一)by Rose
    注意力机制在MDNet跟踪算法中的应用 by leona
    Deep Sort 多目标跟踪算法总结-by Wilson
    tf.truncated_normal_initializer
    tf.add_to_collection方法
    tf.trainable_variables方法
  • 原文地址:https://www.cnblogs.com/coding-wtf/p/5894179.html
Copyright © 2020-2023  润新知