题目涉及算法:
- 乒乓球:简单字符串模拟;
- 数字游戏:区间DP;
- 栈:卡特兰数
- 麦森数:高精度、快速幂、数学。
乒乓球
题目链接:https://www.luogu.org/problem/P1042
这道题目是一道较为繁琐的字符串模拟,有点烦但是并不难。
我的代码的思想是将到‘E’为止的输入全部存到一个字符串中,然后遍历字符串,用win_point来存放赢的分数,用lose_point来存放对手赢的分数,如果满足条件 (win_point>=11 || lose_point>=11) && abs(win_point-lose-point)>=2
,则说明一局结束了(21分制同理)。
这里需要注意的一点是:我最后还是需要输出当前这一句目前的比分(是‘0:0’也要输出)。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
char s[1000000], c;
int n, win_point, lost_point;
int main() {
while ((c = getchar()) != 'E') {
if (c == 'W' || c == 'L') s[n++] = c;
}
for (int i = 0; i < n; i ++) {
s[i] == 'W' ? win_point ++ : lost_point ++;
if ((win_point >= 11 || lost_point >= 11) && abs(win_point-lost_point) >= 2) {
cout << win_point << ":" << lost_point << endl;
win_point = lost_point = 0;
}
}
cout << win_point << ":" << lost_point << endl;
cout << endl;
win_point = lost_point = 0;
for (int i = 0; i < n; i ++) {
s[i] == 'W' ? win_point ++ : lost_point ++;
if ((win_point >= 21 || lost_point >= 21) && abs(win_point-lost_point) >= 2) {
cout << win_point << ":" << lost_point << endl;
win_point = lost_point = 0;
}
}
cout << win_point << ":" << lost_point << endl;
return 0;
}
数字游戏
题目链接:https://www.luogu.org/problem/P1043
这道题目涉及知识点:区间DP。
这里面涉及一个环,但是我们可以拆开这个环。
我们假设输入的是 (a_1 , dots , a_n) ,那么我们可以
- 令 (sum[i]) 表示 (a_1 + dots + a_i)
- 令 (maxv[i][j][k]) 表示区间 ([i,j]) 范围分成 (k) 份能够获得的最大乘积;
- 令 (maxv[i][j][k]) 表示区间 ([i,j]) 范围分成 (k) 份能够获得的最大乘积
可以得到状态转移方程如下:
(maxv[i][j][k] = max(maxv[i][j][k], maxv[i][l][k-1] * get_mod(sum[j]-sum[l]) ))
(minv[i][j][k] = min(minv[i][j][k], minv[i][l][k-1] * get_mod(sum[j]-sum[l]) ))
其中,(get_mod(a)) 用于获得 (a mod 10) 的结果。
然后:
最大值就是 (maxv[1][n][m]) 和所有满足条件的 (maxv[i][j][m-1] * get_mod(sum[i-1] + sum[n] - sum[j])) 中的最大值;
最小值就是 (minv[1][n][m]) 和所有满足条件的 (minv[i][j][m-1] * get_mod(sum[i-1] + sum[n] - sum[j])) 中的最小值。
这样就解决了环的问题,因为最外面的环肯定最多只占一段。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
int n, m, a[maxn], sum[maxn];
long long maxv[maxn][maxn][10], minv[maxn][maxn][10], max_ans, min_ans;
long long get_mod(long long a) {
return (a % 10 + 10) % 10;
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) {
cin >> a[i];
sum[i] = sum[i-1] + a[i];
}
if (m == 1) {
cout << get_mod(sum[n]) << endl;
cout << get_mod(sum[n]) << endl;
return 0;
}
for (int k = 1; k <= m; k ++) {
for (int i = 1; i+k-1 <= n; i ++) {
for (int j = i+k-1; j <= n; j ++) {
if (k == 1) {
maxv[i][j][k] = get_mod(sum[j] - sum[i-1]);
minv[i][j][k] = get_mod(sum[j] - sum[i-1]);
}
else { // k > 1
for (int l = i+k-2; l < j; l ++) {
maxv[i][j][k] = max(maxv[i][j][k], maxv[i][l][k-1] * get_mod(sum[j]-sum[l]) );
minv[i][j][k] = min(minv[i][j][k], minv[i][l][k-1] * get_mod(sum[j]-sum[l]) );
}
}
}
}
}
max_ans = maxv[1][n][m];
min_ans = minv[1][n][m];
for (int i = 1; i <= n-m+1; i ++) {
for (int j = i+m-2; j <= n; j ++) {
max_ans = max(max_ans, maxv[i][j][m-1] * get_mod(sum[i-1] + sum[n] - sum[j]) );
min_ans = min(max_ans, minv[i][j][m-1] * get_mod(sum[i-1] + sum[n] - sum[j]) );
}
}
cout << min_ans << endl;
cout << max_ans << endl;
return 0;
}
栈
题目描述:https://www.luogu.org/problem/P1044
这道题目就是一道“卡特兰数”,我时直接套公式做的(当然也有递推公式),公式如下:
(Ci = frac1{n+1}C_{2n}^n)
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
int n;
long long m1 = 1, m2 = 1, tmp;
int main() {
cin >> n;
for (int i = n; i >= 1; i --) {
m1 *= i+n;
m2 *= i;
tmp = __gcd(m1, m2);
m1 /= tmp;
m2 /= tmp;
}
m1 /= n+1;
cout << m1 << endl;
return 0;
}
麦森数
题目链接:https://www.luogu.org/problem/P1045
这道题目一眼看过去就是高精度+快速幂。
这里有一个优化,就是长度,因为是2进制的P位数,并且它在十进制下不会是连续的全都是 (9) ,所以 (2^P-1) 肯定和 (2^P) 具有相同的位数。
所以长度可以直接通过公式 (lceil P imes frac{log 2}{log 10}
ceil) 获得。
然后最暴力的快速幂高精度幂是会超时的,但是如果我们在运算过程中保证因数的长补不超过500(截取末尾500位),就不会超时。
(然后我因为年纪比较大了,所以高精度运算直接搬了我之前写的模板囧~ 所以大家还是只看主函数就好了, multi
函数就是高精度乘, Sub
函数就是高精度减)
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10000010;
int a[maxn], b[maxn], res[maxn];
string add(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m) + 1;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] + b[i];
if (res[i] >= 10) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
string sub(string s1, string s2) { // under condition: s1>=s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m);
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] - b[i];
if (res[i] < 0) {
res[i+1] --;
res[i] += 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
bool cmp(string s1, string s2) { // under condition: s1,s2 >= 0
int n = s1.length(), m = s2.length();
int i;
for (i = 0; i < n-1 && s1[i] == '0'; i ++);
s1 = s1.substr(i);
for (i = 0; i < m-1 && s2[i] == '0'; i ++);
s2 = s2.substr(i);
if (s1.length() != s2.length()) return s1.length() < s2.length();
return s1 < s2;
}
string Add(string s1, string s2) {
if (s1[0] == '-' && s2[0] == '-') {
return "-" + add(s1.substr(1), s2.substr(1));
}
else if (s1[0] == '-') {
s1 = s1.substr(1);
if (cmp(s1, s2) == true) {
return sub(s2, s1);
} else {
return "-" + sub(s1, s2);
}
}
else if (s2[0] == '-') {
s2 = s2.substr(1);
if (cmp(s1, s2) == true) {
return "-" + sub(s2, s1);
} else {
return sub(s1, s2);
}
}
else {
return add(s1, s2);
}
}
string Sub(string s1, string s2) {
if (s2[0] == '-') {
s2 = s2.substr(1);
return Add(s1, s2);
}
else {
return Add(s1, "-" + s2);
}
}
string multi(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = n + m;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < n; i ++)
for (int j = 0; j < m; j ++)
res[i+j] += a[i] * b[j];
for (int i = 0; i < len; i ++) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
pair<string, string> divide(string s1, string s2) { // under condition: s1>=0,s2>0
string s = "", t = "";
int n = s1.length(), m = s2.length();
bool flag = false;
for (int i = 0; i < n; i ++) {
s += s1[i];
int num = 0;
while (cmp(s, s2) == false) {
num ++;
s = sub(s, s2);
}
if (num > 0) {
flag = true;
char c = (char)(num + '0');
t += c;
}
else if (flag) {
t += '0';
}
}
if (t.length() == 0) t = "0";
while (s[0] == '0' && s.length() > 1) s = s.substr(1);
return make_pair(t, s);
}
string s = "2", t = "1", ans = "";
int P;
int main() {
cin >> P;
int ans_len = ceil(P * log(2) / log(10));
cout << ans_len << endl;
while (P > 1) {
if (P % 2) {
t = multi(t, s);
if (t.length() > 500) t = t.substr(t.length()-500, 500);
}
s = multi(s, s);
if (s.length() > 500) s = s.substr(s.length()-500, 500);
P /= 2;
}
s = multi(s, t);
s = Sub(s, "1");
int len = s.length();
if (len <= 500) for (int i = 0; i < 500 - len; i ++) ans += "0";
if (len <= 500)
ans += s;
else
ans = s.substr(len-500, 500);
for (int i = 0; i < 10; i ++) cout << ans.substr(i*50, 50) << endl;
return 0;
}