• 002:pcl 点云投影


    1.首先包含的对应的ModelCoefficients.h以及filter中向平面投影的project_inlier.h

    #include <iostream>
    
    #include <pcl/io/pcd_io.h>
    
    #include <pcl/point_types.h>
    
    #include <pcl/ModelCoefficients.h>
    
    #include <pcl/filters/project_inliers.h>
    
    

    2.增加可视化显示的代码

    int user_data;
    
    void
    
    viewerOneOff(pcl::visualization::PCLVisualizer& viewer)
    
    {
    
           viewer.setBackgroundColor(1.0, 0.5, 1.0);
    
           pcl::PointXYZ o;
    
           o.x = 1.0;
    
           o.y = 0;
    
           o.z = 0;
    
           viewer.addSphere(o, 0.25, "sphere", 0);
    
           std::cout << "i only run once" << std::endl;
    }
    
    void
    
    viewerPsycho(pcl::visualization::PCLVisualizer& viewer)
    
    {
    
           static unsigned count = 0;
    
           std::stringstream ss;
    
           ss << "Once per viewer loop: " << count++;
    
           viewer.removeShape("text", 0);
    
           viewer.addText(ss.str(), 200, 300, "text", 0);
    
           //FIXME: possible race condition here:
    
           user_data++;
    
    }
    
    
    

    3.创建点云对象指针并初始化,输出到屏幕

    /2.初始化该对象
    
      cloud->width  = 5;//对于未组织的点云的相当于points个数
    
      cloud->height = 1; //对未组织的点云指定为1
    
      cloud->points.resize (cloud->width * cloud->height); //修剪或追加值初始化的元素
    
      for (size_t i = 0; i < cloud->points.size (); ++i)
    
      {
    
        cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
    
        cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
    
        cloud->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
    
      }
    
      // 3.cerr 输出对象放置刷屏
    
      std::cerr << "Cloud before projection: " << std::endl;
    
      for (size_t i = 0; i < cloud->points.size (); ++i)
    
        std::cerr << "    " << cloud->points[i].x << " " 
    
                            << cloud->points[i].y << " " 
    
                            << cloud->points[i].z << std::endl;
    
    
    
    //投影前点
    `Cloud before projection:
        1.28125 577.094 197.938
        828.125 599.031 491.375
        358.688 917.438 842.563
        764.5 178.281 879.531
        727.531 525.844 311.281
    
    

    4.设置ModelCoefficients值。在这种情况下,我们使用一个平面模型,其中ax + by + cz + d = 0,其中a = b = d = 0,c = 1,或者换句话说,XY平面

      // 4.创建一个系数为X=Y=0,Z=1的平面
    
      pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
    
      coefficients->values.resize (4);
    
      coefficients->values[0] = coefficients->values[1] = 0;
    
      coefficients->values[2] = 1.0;
    
      coefficients->values[3] = 0;
    
    

    5.通过该滤波将所有的点投影到创建的平面上,并输出结果
    ** 注意这里在使用的时候再创建滤波后对象不规范,应该放在程序开始的时候**

      //5.创建滤波后对象,并通过滤波投影,并显示结果
    
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected(new 
    pcl::PointCloud<pcl::PointXYZ>);
    
      // 创建滤波器对象
    
      pcl::ProjectInliers<pcl::PointXYZ> proj;
    
      proj.setModelType (pcl::SACMODEL_PLANE);
    
      proj.setInputCloud (cloud);
    
      proj.setModelCoefficients (coefficients);
    
      proj.filter (*cloud_projected);
      //可视化显示
       pcl::visualization::CloudViewer viewer("Cloud Viewer");
    
      //showCloud函数是同步的,在此处等待直到渲染显示为止
    
      viewer.showCloud(cloud);
    
      //该注册函数在可视化时只调用一次
    
      viewer.runOnVisualizationThreadOnce(viewerOneOff);
    
      //该注册函数在渲染输出时每次都调用
    
      viewer.runOnVisualizationThread(viewerPsycho);
    
      while (!viewer.wasStopped())
    
      {
    
             //在此处可以添加其他处理
    
             user_data++;
    
      }
      
    
      std::cerr << "Cloud after projection: " << std::endl;
    
      for (size_t i = 0; i < cloud_projected->points.size (); ++i)
    
        std::cerr << "    " << cloud_projected->points[i].x << " " 
    
                            << cloud_projected->points[i].y << " " 
    
                            << cloud_projected->points[i].z << std::endl;
      return (0);
    
    //投影后点
    Cloud before projection:
        1.28125 577.094 197.938
        828.125 599.031 491.375
        358.688 917.438 842.563
        764.5 178.281 879.531
        727.531 525.844 311.281
    Cloud after projection:
        1.28125 577.094 0
        828.125 599.031 0
        358.688 917.438 0
        764.5 178.281 0
        727.531 525.844 0
    
    

    6.参考网址
    pcl官网例程
    all-in_one 中的有api 以及例子,但是具体理论说明还是参考官网吧!
    ...PCL-1.8.1-AllInOne-msvc2017-win64(1)sharedocpcl-1.8 utorialssources中 例子要比pcl入门精通要全

  • 相关阅读:
    React初识整理(二)--生命周期的方法
    React初识整理(一)
    前后端分离浅析
    url地址数据参数转化JSON对象(js三种方法实现)
    js和JQuery中的获取宽、高、位置等方法整理
    游民轮播图效果实现
    焦点轮播图效果实现
    iOS开发debug集锦
    实现一个 RESTful API 服务器
    从iOS的图片圆角想到渲染
  • 原文地址:https://www.cnblogs.com/codeAndlearn/p/11613601.html
Copyright © 2020-2023  润新知