Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4488 Accepted Submission(s): 3377
Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
Author
xhd
Source
Recommend
linle | We have carefully selected several similar problems for you: 1588 2256 2604 2254 3117
#include <map> #include <set> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <iostream> #include <stack> #include <cmath> #include <string> #include <vector> #include <cstdlib> //#include <bits/stdc++.h> //#define LOACL #define space " " using namespace std; typedef long long LL; typedef __int64 Int; typedef pair<int, int> paii; const int INF = 0x3f3f3f3f; const double ESP = 1e-5; const double PI = acos(-1.0); const int MOD = 9973; const int MAXN = 15; int n, m; struct Matrix { LL m[MAXN][MAXN]; int row, col; }; Matrix ori, res, u; void init() { memset(res.m, 0, sizeof(res.m)); ori.row = ori.col = n; } void scan_in() { for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { scanf("%d", &ori.m[i][j]); } } } Matrix multi(Matrix x, Matrix y) { Matrix z; memset(z.m, 0, sizeof(z.m)); z.row = x.row; z.col = y.col; for (int i = 1; i <= x.row; i++) { for (int k = 1; k <= x.col; k++) { for (int j = 1; j <= y.col; j++) { z.m[i][j] += x.m[i][k]*y.m[k][j]%MOD; } z.m[i][k] %= MOD; } } return z; } Matrix pow_mod(Matrix a, int x){ Matrix b; b.col = a.col; b.row = a.row; memset(b.m, 0, sizeof(b.m)); for (int i = 1; i <= n; i++) { b.m[i][i] = 1; } while(x){ if(x&1) b = multi(a,b); a = multi(a, a); x >>= 1; } return b; } int main() { int T; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); init(); scan_in(); res = pow_mod(ori, m); int ans = 0; for (int i = 1; i <= n; i++) { ans += res.m[i][i]; } printf("%d ", ans%MOD); } return 0; }