• 拉格朗日插值


    study from

    https://blog.csdn.net/Code92007/article/details/94412729

    P5050 【模板】多项式多点求值

    各种神仙常数优化、NTT

    1.常数优化(来自洛谷题解)

    学习了!

    O2优化 g++某些版本

    循环展开:并行操作

    http://blog.miskcoo.com/2015/05/polynomial-multipoint-eval-and-interpolation

    但还是超时了

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #include <iostream>
     8 using namespace std;
     9 #define ull unsigned long long
    10 #define R register
    11 
    12 const double eps=1e-8;
    13 const ull inf=1e9;
    14 const ull mod=998244353;
    15 const int maxn=1e5+10;
    16 
    17 ull a[maxn],b[17]; ///can not use as constant
    18 
    19 inline void read(R ull &y)
    20 {
    21     char ch=getchar();
    22     y=0;
    23     while (ch<'0' || ch>'9')
    24         ch=getchar();
    25     while (ch>='0' && ch<='9')
    26         y=y*10+ch-48,ch=getchar();
    27 }
    28 
    29 char pr[10];
    30 int cnt;
    31 inline void write(R ull &y)
    32 {
    33     cnt=0;
    34     while (y)
    35     {
    36         pr[++cnt]=y%10+48;
    37         y/=10;
    38     }
    39     for (R int i=cnt;i;i--)
    40         putchar(pr[i]);
    41     putchar('
    ');
    42 }
    43 
    44 int main()
    45 {
    46     R ull n,m,x,y,c1,c2,c3,c4;
    47     R int i;
    48     read(n),read(m);
    49     for (i=0;i<=n;i++)
    50         read(a[i]);
    51     while (m--)
    52     {
    53         read(x);
    54         b[0]=1;
    55         for (i=1;i<=16;i++)
    56             b[i]=b[i-1]*x%mod;
    57         y=0;
    58         for (i=n;i>=15;i-=16)
    59         {
    60             ///998244353^2*16 ‭15,943,868,612,742,217,744‬
    61             ///unsigned long long 1.8e19
    62             c1=a[i]*b[15]+a[i-1]*b[14]+a[i-2]*b[13]+a[i-3]*b[12];
    63             c2=a[i-4]*b[11]+a[i-5]*b[10]+a[i-6]*b[9]+a[i-7]*b[8];
    64             c3=a[i-8]*b[7]+a[i-9]*b[6]+a[i-10]*b[5]+a[i-11]*b[4];
    65             c4=a[i-12]*b[3]+a[i-13]*b[2]+a[i-14]*b[1]+a[i-15];
    66             y=(c1+c2+c3+c4+y*b[16])%mod;
    67         }
    68         for (;i>=0;i--)
    69             y=(y*x+a[i])%mod;
    70         write(y);
    71     }
    72     return 0;
    73 }
    74 /*
    75 20 3
    76 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    77 2 1 3
    78 */

     原始代码

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #include <iostream>
     8 using namespace std;
     9 #define ll long long
    10 
    11 const double eps=1e-8;
    12 const ll inf=1e9;
    13 const ll mod=998244353;
    14 const int maxn=1e5+10;
    15 
    16 ll a[maxn];
    17 
    18 inline void read(ll &y)
    19 {
    20     char ch=getchar();
    21     y=0;
    22     while (ch<'0' || ch>'9')
    23         ch=getchar();
    24     while (ch>='0' && ch<='9')
    25         y=y*10+ch-48,ch=getchar();
    26 }
    27 
    28 int main()
    29 {
    30     int n,m,i;
    31     ll x,y,z;
    32     scanf("%d%d",&n,&m);
    33     for (i=0;i<=n;i++)
    34         read(a[i]);
    35     while (m--)
    36     {
    37         read(x);
    38         y=0;
    39         z=1;
    40         for (i=0;i<=n;i++)
    41         {
    42             (y+=a[i]*z)%=mod;
    43             z=z*x%mod;
    44         }
    45         printf("%lld
    ",y);
    46     }
    47     return 0;
    48 }

    P4781 【模板】拉格朗日插值

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #include <iostream>
     8 using namespace std;
     9 #define ll long long
    10 
    11 const double eps=1e-8;
    12 const ll inf=1e9;
    13 const ll mod=998244353;
    14 const int maxn=2e3+10;
    15 
    16 ll a[maxn],x[maxn],y[maxn];
    17 
    18 ll mul(ll a,ll b)
    19 {
    20     ll y=1;
    21     while (b)
    22     {
    23         if (b&1)
    24             y=y*a%mod;
    25         a=a*a%mod;
    26         b>>=1;
    27     }
    28     return y;
    29 }
    30 
    31 int main()
    32 {
    33     ll i,j,n,d,tot,sum=0,u,v;
    34     scanf("%lld%lld",&n,&d);
    35     for (i=0;i<n;i++)
    36         scanf("%lld%lld",&x[i],&y[i]);
    37     ///n*n
    38     ///multiply n-1 numbers
    39     for (i=0;i<n;i++)
    40     {
    41         ///can also multiply n numbers and divide one number
    42         u=1;
    43         for (j=0;j<n;j++)
    44             if (i!=j)
    45                 u=u*(d-x[j])%mod;
    46 
    47         v=1;
    48         for (j=0;j<n;j++)
    49             if (i!=j)
    50                 v=v*(x[i]-x[j])%mod;
    51 
    52         tot=y[i]*u%mod;
    53         if (v<0)
    54             tot=-tot,v=-v;
    55 
    56         (sum+=tot*mul(v,mod-2)%mod)%=mod;
    57     }
    58     printf("%lld
    ",(sum+mod)%mod);
    59     return 0;
    60 }
    61 /*
    62 3 4
    63 1 4
    64 2 9
    65 3 16
    66 */

    https://loj.ac/problem/166

    P5158 【模板】多项式快速插值

    之后再补

    ===============================

    自然数幂和

    https://codeforces.com/problemset/problem/622/F

    F. The Sum of the k-th Powers

    k+1次函数的证明

    1.

    “差分” 牛顿插值多项式

    (from https://www.bbsmax.com/A/RnJWLeoE5q/)

    2.

    不同方法 https://blog.csdn.net/werkeytom_ftd/article/details/50741165

    其中的分治fft棒棒的!

    伯努利数 https://blog.csdn.net/cj1064789374/article/details/85388995

    斯特林数 https://blog.csdn.net/lyd_7_29/article/details/75041818

    若干个k次函数相加为k+1次函数

    ai

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #include <iostream>
     8 using namespace std;
     9 #define ll long long
    10 
    11 const double eps=1e-8;
    12 const ll inf=1e9;
    13 const ll mod=1e9+7;
    14 const int maxn=1e6+10;
    15 
    16 ll y[maxn],a[maxn],jie[maxn],inv_jie[maxn];
    17 
    18 ll mul(ll a,ll b)
    19 {
    20     ll y=1;
    21     while (b)
    22     {
    23         if (b&1)
    24             y=y*a%mod;
    25         a=a*a%mod;
    26         b>>=1;
    27     }
    28     return y;
    29 }
    30 
    31 int main()
    32 {
    33     ll n,k,i,u,tot,sum=0;
    34     scanf("%lld%lld",&n,&k);
    35     k++;
    36     for (i=1;i<=k;i++)
    37         y[i]=(y[i-1]+mul(i,k-1))%mod;   ///
    38     if (n<=k)
    39     {
    40         printf("%lld",y[n]);
    41         return 0;
    42     }
    43 
    44     u=1;
    45     for (i=n;i>=n-k;i--)
    46         u=u*i%mod;
    47 
    48     jie[0]=1;
    49     for (i=1;i<=k;i++)
    50         jie[i]=jie[i-1]*i%mod;
    51     inv_jie[k]=mul(jie[k],mod-2);
    52     for (i=k-1;i>=0;i--)    ///
    53         inv_jie[i]=inv_jie[i+1]*(i+1)%mod;
    54 
    55     for (i=0;i<=k;i++)
    56     {
    57         tot=inv_jie[i]*inv_jie[k-i]%mod *u%mod *mul(n-i,mod-2)%mod;
    58         if ((k-i)&1)
    59             tot=-tot;
    60         (sum+=tot*y[i])%=mod;
    61     }
    62     printf("%lld",(sum+mod)%mod);
    63     return 0;
    64 }
    65 /*
    66 1 10
    67 10 1
    68 10 2
    69 10 3
    70 */

    另外的题目

    The 2019 ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    https://www.cnblogs.com/cmyg/p/11255754.html

    BZOJ2665
    BZOJ4559

  • 相关阅读:
    8086汇编 学习1
    微信小程序 websocket+node.js(ws)
    kali安装google 浏览器
    bugkuctf Easy_Re
    课设记录-Day06
    GitLab使用教程
    课设记录-Day05
    课设记录-Day04
    课设记录-Day03
    课设记录-Day02
  • 原文地址:https://www.cnblogs.com/cmyg/p/11256321.html
Copyright © 2020-2023  润新知