• poj 3070 矩阵快速幂


    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12457   Accepted: 8851

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source

     
    题意: 求斐波那契数列
     
    题解; 矩阵快速幂 第一题
            关键在于矩阵的构造  之后就是快速幂了
            矩阵的构造 http://www.cnblogs.com/frog112111/archive/2013/05/19/3087648.html
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<queue>
     5 #include<stack>
     6 #include<map>
     7 #define mod 10000
     8 using namespace std;
     9 struct matrix
    10 {
    11     int m[5][5];
    12 } ans,exm;
    13 
    14 struct matrix matrix_mulit(struct matrix aa,struct matrix bb)
    15 {
    16     struct matrix there;
    17     for(int i=0;i<2;i++)
    18     {
    19         for(int j=0;j<2;j++)
    20         {
    21             there.m[i][j]=0;
    22             for(int k=0;k<2;k++)
    23             there.m[i][j]=(there.m[i][j]+aa.m[i][k]*bb.m[k][j]%mod)%mod;
    24         }
    25     }
    26     return there;
    27 }
    28 int matrix_quick(int gg)
    29 {
    30      exm.m[0][0]=exm.m[0][1]=exm.m[1][0]=1;
    31      exm.m[1][1]=0;
    32      ans.m[0][0]=ans.m[1][1]=1;  
    33      ans.m[0][1]=ans.m[1][0]= 0;
    34      while(gg)
    35      {
    36          if(gg&1)  
    37          {
    38              ans=matrix_mulit(ans,exm);        
    39          }
    40         exm = matrix_mulit(exm, exm);
    41         gg >>= 1;
    42     }
    43      return ans.m[0][0];
    44 } 
    45 int n; 
    46 int main()
    47 {
    48     while(scanf("%d",&n)!=EOF)
    49     {
    50         if(n==-1)
    51          break;    
    52         printf("%d
    ",matrix_quick(n));
    53     }
    54     return 0;
    55 } 
  • 相关阅读:
    SSLZYC NOIP
    SSLZYC 懒惰的奶牛①
    SSLZYC 小麦高度
    Pythonlog() 函数
    详细解读Python中的__init__()方法
    详细解读Python中的__init__()方法
    Linux软件安装中RPM与YUM 区别和联系
    Linux软件安装中RPM与YUM 区别和联系
    【我的物联网成长记】设备如何进行选型?
    【我的物联网成长记】设备如何进行选型?
  • 原文地址:https://www.cnblogs.com/hsd-/p/5516665.html
Copyright © 2020-2023  润新知