• 一个简单的时间片轮转多道程序内核操作系统工作流程


    一.操作系统工作概述

    1. 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构;

    2. 函数调用堆栈,高级语言得以执行的基础;

    3. 中断。多道程序操作系统的基点。

    二.代码分析

    在上一篇博文《搭建OS kernel环境方法》的基础上进行时间片轮转多道程序的小os.

    主要对mypcb.h,  mymain.c 和myinterrupt.c这三个文件进行分析。


    <pre name="code" class="cpp"><span style="font-size:12px;">//mypcb.h
    </span>
    <span style="font-size:12px;">#define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8
    /* CPU-specific state of this task */
    struct Thread {//给任务定义一个eip和esp
        unsigned longip;
        unsigned longsp;
    };
    typedef struct PCB{
        int pid;//任务编号
        volatile long state;/* -1 unrunnable, 0 runnable, >0 stopped */
        char stack[KERNEL_STACK_SIZE];     //定义栈空间
        /* CPU-specific state of this task */
        struct Thread thread;       //定义进程的结构体thread, 当中有eip和esp
        unsigned longtask_entry;//任务的函数起始处, 也就是任务第一次运行的起始位置
        struct PCB *next;//一个任务链表, 指向下一个任务
    }tPCB;</span>

    
    

    //mymain.c
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    #include "mypcb.h"    //引入当中两个结构体表示
    tPCB task[MAX_TASK_NUM];//定义两个数组
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;//定义是否调度, 1则调度, 0则不调度
    void my_process(void);
    void __init my_start_kernel(void)    //起始函数位置
    {
        int pid = 0;
        int i;
        <strong>/* Initialize process 0*/</strong>
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];   <strong>//0号进程栈在最開始的位置</strong>
        task[pid].next = &task[pid];
        
       <strong> /*fork more process */</strong>
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));//复制0号进程的结构形式
            task[i].pid = i;
            task[i].state = -1;//初始的任务(除0号进程外)都设置成未运行
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;<strong>//新fork的进程加到进程链表的尾部,  该新建任务的next指向上一个任务的next,也就是自己(最后一个)</strong>
            task[i-1].next = &task[i];  <strong>//配置上一个任务的next指向这时候新创建的任务</strong>
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];//先让0号进程先运行
      <strong>  asm volatile(
          "movl %1,%%esp
    	" /* set task[pid].thread.sp to esp */
          "pushl %1
    	"        /* push ebp ,当前esp=ebp*/
          "pushl %0
    	"        /* push task[pid].thread.ip */
          "ret
    	"            /* pop task[pid].thread.ip to eip */
          "popl %%ebp
    	"
          : 
          : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)/* input c or d mean %ecx/%edx*/
          );</strong>
    }   
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)//推断是否调度。该值可有itnerrupt.c中的函数来配置
                {
                    my_need_sched = 0;
                    my_schedule(); //主动调动的机制
               }
               printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    //myinterrupt.c
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    #include "mypcb.h"
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)//时钟中断1000次的时候,调度一次, 配置调度值为1
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;  
    }
    void my_schedule(void)     //<span style="color:#ff0000;">调度函数, 核心函数</span>
    {
        tPCB * next;//定义两个指针
        tPCB * prev;
        if(my_current_task == NULL //当前进程和下一进程为空, 即没有任务, 返回
            || my_current_task->next == NULL)
        {
          return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        <strong><span style="color:#ff0000;">/* 在调度函数中, next指向的是下一个将要被调度的任务, prev指向的是当前正在运行的任务*/</span></strong>
        /* schedule */
        next = my_current_task->next;//把当前进程的下一个进程赋值给next。当前进程赋值给prev
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ 
        {   //<strong>假设下一个任务不是第一次被调度, 则运行,下一个进程<span style="color:#ff0000;">有进程上下文</span></strong>
          	/* switch to next process */
         	<span style="color:#ff0000;">asm volatile( 
            	"pushl %%ebp
    	"       /* save 当前进程 ebp */
           		"movl %%esp,%0
    	"     /* save 当前 esp 赋值到prev.thread.sp */
            	"movl %2,%%esp
    	"     /* restore 下一个进程的sp到 esp */
            	"movl $1f,%1
    	"       /*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处開始继续运行</strong> */
            
    		/* 启动下一个进程*/
    		"pushl %3
    	"          /*保存下一个进程eip保存到栈里面*/
            	"ret
    	"               /* restore  eip */
            
    		"1:	"                  /* next process start here */
            	"popl %%ebp
    	"
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
          ); </span>
          my_current_task = next; 
          printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);   
        }
        else
        {  <strong> //下一个进程为第一次运行时,<span style="color:#ff0000;">没有进程上下文</span>, 则以以下这样的方式来处理</strong>
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
        	<span style="color:#ff0000;">asm volatile( 
            	"pushl %%ebp
    	"       /* save ebp */
           		"movl %%esp,%0
    	"     /* save esp */x`
            	"movl %2,%%esp
    	"     /* restore  esp */
            	"movl %2,%%ebp
    	"     /* restore  ebp */
            	"movl $1f,%1
    	"       /*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处開始继续运行</strong> */
    
    		/* 启动下一个进程*/
            	"pushl %3
    	" 
            	"ret
    	"               /* restore  eip */
    
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
              );          </span>
        }   
        return;
    }

    借用还有一篇博文,以新任务切换为例进行堆栈变化分析:
     

    author: 于凯

    參考课程:《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000


  • 相关阅读:
    uniapp IOS使用uni.getLocation获取不到具体城市名字
    uniapp 打开[ios/安卓]GPS定位权限
    for循环中利用计时器使用let和var
    uniapp 调起底部输入框textarea聊天页面被键盘顶起
    父子组件传布尔类型,发现有问题一直传字符串
    Kafka学习-基础知识
    剑指offer-删除链表中重复的节点
    LEACH协议原文详解
    主流机器学习框架
    算法工程师-职位描述
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/6888217.html
Copyright © 2020-2023  润新知