• BZOJ4650 : [NOI2016]优秀的拆分


    题面

    传送门

    Sol

    求个以(i)为结尾的(AA)串的个数和以(i)为开头的(AA)串的个数
    乘法原理即可,暴力求有95分
    而你会发现,枚举l,经过(i)(i+l)的只要算出它左右各能扩展到哪里,然后这个区间内的都要(+1)
    差分一下+后缀数组

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e5 + 5);
    
    IL ll Input(){
        RG ll x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int n, pre[_], suf[_], lg[_];
    ll ans = 0;
    char s[_];
    struct SA{
        int a[_], t[_], tmp[_], rk[_], sa[_], height[_], st[20][_];
    
    	IL void Init(){
    		Fill(a, 0);
    	}
    	
        IL bool Cmp(RG int x, RG int y, RG int z){
            return tmp[x] == tmp[y] && x + z <= n && y + z <= n && tmp[x + z] == tmp[y + z];
        }
    
        IL void Suffix_Sort(){
            RG int m = 26;
            for(RG int i = 0; i <= m; ++i) t[i] = 0;
            for(RG int i = 1; i <= n; ++i) ++t[rk[i] = a[i]];
            for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
            for(RG int i = n; i; --i) sa[t[rk[i]]--] = i;
            for(RG int k = 1; k <= n; k <<= 1){
                RG int l = 0;
                for(RG int i = n - k + 1; i <= n; ++i) tmp[++l] = i;
                for(RG int i = 1; i <= n; ++i) if(sa[i] > k) tmp[++l] = sa[i] - k;
                for(RG int i = 0; i <= m; ++i) t[i] = 0;
                for(RG int i = 1; i <= n; ++i) ++t[rk[tmp[i]]];
                for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
                for(RG int i = n; i; --i) sa[t[rk[tmp[i]]]--] = tmp[i];
                swap(rk, tmp); rk[sa[1]] = l = 1;
                for(RG int i = 2; i <= n; ++i) rk[sa[i]] = Cmp(sa[i - 1], sa[i], k) ? l : ++l;
                if(l >= n) break;
                m = l;
            }
            for(RG int i = 1, h = 0; i <= n; ++i){
                if(h) --h;
                while(a[i + h] == a[sa[rk[i] - 1] + h]) ++h;
                height[rk[i]] = h;
            }
        }
    
        IL void ST_Prepare(){
            for(RG int i = 1; i <= n; ++i) st[0][i] = height[i];
            for(RG int i = 1; i <= lg[n]; ++i)
                for(RG int j = 1; j + (1 << i) - 1 <= n; ++j)
                    st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
        }
    
        IL int LCP(RG int x, RG int y){
            x = rk[x]; y = rk[y];
            if(x > y) swap(x, y);
            RG int len = lg[y - x];
            return min(st[len][x + 1], st[len][y - (1 << len) + 1]);
        }
    } A, B;
    
    int main(RG int argc, RG char* argv[]){
        for(RG int i = 2; i <= 30000; ++i) lg[i] = lg[i >> 1] + 1;
        for(RG int T = Input(); T; --T){
    		A.Init(); B.Init();
            scanf(" %s", s + 1);
            n = strlen(s + 1); ans = 0;
            for(RG int i = 1; i <= n; ++i){
                B.a[n - i + 1] = A.a[i] = s[i] - 'a' + 1;
                suf[i] = pre[i] = 0;
            }
            A.Suffix_Sort(); A.ST_Prepare();
            B.Suffix_Sort(); B.ST_Prepare();
            for(RG int l = 1; l + l <= n; ++l)
                for(RG int i = l; i + l <= n; i += l){
                    RG int r = i + l, x = min(A.LCP(i, r), l), y = min(B.LCP(n - i + 1, n - r + 1), l), len = x + y - l;
                    if(x + y > l){
                        suf[i - y + 1]++; suf[i - y + 1 + len]--;
                        pre[r + x - len]++; pre[r + x]--;
                    }
                }
            for(RG int i = 1; i <= n; ++i) pre[i] += pre[i - 1], suf[i] += suf[i - 1];
            for(RG int i = 1; i < n; ++i) ans += 1LL * pre[i] * suf[i + 1];
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
    
  • 相关阅读:
    推箱子(简易版)
    [LeetCode] Word Ladder II
    [LeetCode] Path Sum
    [LeetCode] Word Ladder
    DFS & BFS
    [LeetCode] Surrounded Regions
    [LeetCode] Add Binary
    [LeetCode] Plus One
    [LeetCode] Single Number II
    [LeetCode] Single Number
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8361580.html
Copyright © 2020-2023  润新知